MATHEMATICAL MODEL OF AGING IN COVID 19

  • Olivera Jovanikic Neurosurgeon, MMA, Belgrade, Serbia

Abstract


Background. Examination of the intima-media thickness of carotid arteries in COVID-19 infection.

Methods. In 50 patients the thickness of the intimomedial complex (IMT) in the common carotid arteries was measured. The values were compared with the control group in 2006-9. The condition of the lungs was assessed by sonography - mild (0-14) or medium-severe (15-28) covid. IMT thickening risk factors and the value of fibrinogen, IL-6 and CRP were recorded. Two IMT prediction models were formed. The socio-epidemiological model predicts the development of IMT based on epidemiological factors. The second model, apart from these factors, also includes the values of the mentioned biomarkers.

Results. It score 20±6,; IMT right 1.024±0.272; left 0.999±0.224. Control: IMT 0.78±0.27; left 0.79±0.27. The group/control difference is highly significant. Epidemiological model: logit (IMT)= 4.463+(2.021+value for GEN)+ (0. 055x AGE value)+(-3.419x RFvalue)+(-4.447x SM value)+(5.115x HTA value)+ (3.56x DMvalue)+(22.389x LIP value)+(24.206x CVD value)+( 1.449x other value)+(-0.138x IT score value)+(0.19xBMI value). Epidemiological-inflammatory model: logit(IMT)=5.204+(2.545x GEN value)+(0.076x AGE value)+(-6.132x RF value)+(-7.583x SM value)+(8.744x HTA value) + (6.838x DM value)+(25.446x LIP value )+(28.825x CVD value)+(2.487x other value)+(-0.218xIt score value)+( 0.649x BMI value) +(-0.194x fibrinogen value)+(0.894x IL-6 value)+( 0.659x CRP value). Values ​​for both models Exp(B)=4.882; P of sample=0.83; logit=-0.19; OR=23.84; model accuracy for first model 87% and for second 88%; Omnibus test of the first model χ2=34.324;p=0.000; reliability coefficient –2LogLH=56, 854 Omnibus test of the second model χ2=39.774;p=0.000; -2LogLH=51,403.

Conclusion.  Aging of blood vessels in COVID-19 can be predicted.

Abbreviations: IMT- thickening of the intima-media complex; GEN - sex; AGE-years; RF - number of risk factors; DM-diabetes; SM-smoking; HTA-hypertension; LIP-lipidemia; CVD- cardiovascular diseases; second - other diseases or condition important for IMT; BMI - body mass index.

References

References
1. Willeit P., Tschiderer L. , Allara E. , Reuber K., Seekircher L. , Gao L. et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation. 2020;142(7):621-42. doi: 10.1161/CIRCULATIONAHA.120.046361.
2. Murray Ch.S.G. , Nahar T. , Kalashyan H., Becher H., Nanda N.C.. Ultrasound assessment of carotid arteries: Current concepts, methodologies, diagnostic criteria, and technological advancements. Echocardiography. 2018;35(12):2079-91. doi: 10.1111/echo.14197.
3. Touboul P.J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007;23(1):75-80. doi: 10.1159/000097034.
4. Liu Y., Zhang H.G.. Vigilance on New-Onset Atherosclerosis Following SARS-CoV-2 Infection. Front Med (Lausanne) 2021;7:629413. doi: 10.3389/fmed.2020.629413.
5. O'ConnorS., Taylor C., Campbell LA., Epstein S., and Libby P.. Potential infectious etiologies of atherosclerosis: a multifactorial perspective. Emerg Infect Dis. 2001; 7(5): 780–8. doi: 10.3201/eid0705.010503
6. Ristić G.G., Lepić T., Glisić B., Stanisavljević D., Vojvodić D., Petronijević M., Stefanović D. Rheumatoid arthritis is an independent risk factor for increased carotid intima-media thickness: impact of anti-inflammatory treatment. Rheumatology (Oxford). 2010;49(6):1076-81. doi: 10.1093/rheumatology/kep456.
7. Najjar S.S., Scuteri A., Lakatta E.G.. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 2005;46(3):454-62. doi: 10.1161/01.HYP.0000177474.06749.98.
8. Spence J.D. . IMT is not atherosclerosis. Atherosclerosis . 2020;312:117-8. doi: 10.1016/j.atherosclerosis.2020.09.016.
9. Raggi P., Stein J.H. . Carotid intima-media thickness should not be referred to as subclinical atherosclerosis: A recommended update to the editorial policy at Atherosclerosis. Atherosclerosis 2020;312:119-20. doi: 10.1016/j.atherosclerosis.2020.09.015.
10. Hemmat N., Ebadi A. , Badalzadeh R., Memar M.Y. , Baghi H.B.. Viral infection and atherosclerosis. Eur J Clin Microbiol Infect Dis. 2018;37(12):2225-33. doi: 10.1007/s10096-018-3370-z.
11. Campbell L.A. and Rosenfeld M.E. Infection and Atherosclerosis Development. Arch Med Res. 2015; 46(5): 339–50. doi: 10.1016/j.arcmed.2015.05.006
12. Ibrahim A.I., Obeid M.T., Jouma M.J., Moasis G.A., Al-Richane W.A., Kindermann I., Boehm M., et al.Detection of herpes simplex virus, cytomegalovirus and Epstein-Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J Clin Virol 2005; 32(1): 29-32. doi: 10.1016/j.jcv.2004.06.010.
13. Fong I.W. Antibiotic effects in rabbit model of Chlamydia pneumoniae-induced atherosclerosis. J Infect Dis . 2000;181: Suppl 3: 514-8. doi: 10.1086/315607.
14. Muhlestein J.B., Anderson J.L., Hammond E.H., Zhao L., Trehan S., Schwobe EP, Carlquist J.F. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azthromycin prevents it in a rabbit model. Circulation 1998;97(7):633-6. doi: 10.1161/01.cir.97.7.633.
15. Zeng H., Pappas C., Belser J.A., Houser K.H., Zhong W., Wadford D.A., et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol 2012;86(2):667-78. doi: 10.1128/JVI.06348-11.
16. Aird W.C.Phenotypic heterogenity of the endothelium: II.Representative vascular beds. Circ Res 2007;100(2):174-90. doi: 10.1161/01.RES.0000255690.03436.ae.
17. Soldati G., Smargiassi A., Inchingolo R., Buonsenso D., Perrone T., Briganti D.F., et al. Is there a role for lung ultrasound during the COVID-19 pandemic. J Ultrasound Med. 2020; 39(7): 1459–62. doi: 10.1002/jum.15284
18. Jin Y., Ji W., Yang H., Chen S., Zhang W., Duan G.. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther 2020;5(1):293. doi: 10.1038/s41392-020-00454-7.
19. Das D.,Podder S. 2 Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput Biol Med 2021;134:104459. doi: 10.1016/j.compbiomed.2021.104459.
20. Ralph L Nachman, Shahin Rafii . Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 2008;359(12):1261-70. doi: 10.1056/NEJMra0800887.
21. Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 2020; 4(12): 2850. doi: 10.1182/bloodadvances.2020002197
22. Klok F.A., Kruip M.J.H.A., van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM , et al. Incidence of thrombotic complicationa in critically ill ICU patients with COVID-19. Thromb Res 2020; 191:145-7. doi: 10.1016/j.thromres.2020.04.013.
23. Wang L. C-reactive protein levels in the aerly stage of COVID-19. Med. Mal. Infect 2020; 50(4): 332-4. doi: 10.1016/j.medmal.2020.03.007.
24. Luo X., Zhou W., Yan X., Guo T., Wang B., Xia H. et al.Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis 2020; 71(16):2174-9. doi: 10.1093/cid/ciaa641.
25. Melnikov S.I., Kozlov S.G., Saburova O.S., Avtaeva Y.N., ProkofievaL.V., Gabbasov Z.A. Current position on the role of monometric C-reactive protein in vascular pathology and atherothrombosis. Curr Pharm Des 2020;26(1):37-43. doi: 10.2174/1381612825666191216144055.
26. Panigada M., Bottino N., Tagliabue P., Grasselli G., Novembrino C., Chantarangkul V. et al. Hypercoagulability in COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost 2020;18(7):1738-42. doi: 10.1111/jth.14850.
27. Ranucci M., Ballotta A., Di Dedda U., Baryshnikova E, Dei Poli M., Resta M. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020;18(7):1747-51. doi: 10.1111/jth.14854.
28. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patiens infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5
29. Liu F., Long X.,Ji G.,Zhang B.,Zhang W., Zhang Z.,et al. Clinicaly significant portal hypertension in cirrhosis patients with COVID-19: clinical characteristics and outcomes. J Infect. 2020; 81(2): 178–80. doi: 10.1016/j.jinf.2020.06.029
30. Ataie-Kachoie P., Pourgholami M.H., Richardson D.R., Morris D.L.. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol 2014;67(11):932-7. doi: 10.1136/jclinpath-2014-202493.
31. Didion SP.Cellular and oxydative mechanisms associated with interleuking-6 signaling in the vasculature. Int J Mol Sci. 2017 Dec; 18(12): 2563. doi: 10.3390/ijms18122563
32. Jovanikić O., Lepić T., Raicević R., Veljancić D., Ristić A., Gligić B. Intimomedial thickness of the vertebral arteries complex: a new useful parameter for the assessment of atheroclerotic process? Vojnosanit Pregl 2011;68(9):733-8. doi: 10.2298/vsp1109733j.
33. Centers for Diseses Control and Prevention; Saving Lives, Protecting PeopleTM https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html, CDC24/7.
Published
2022/12/05
Section
Original paper