MATHEMATIČKI MOEL STARENJA U COVID-19

  • Olivera Jovanikic Neurosurgeon, MMA, Belgrade, Serbia
Ključne reči: COVID19 virus, mathematical model, intima-media thickness, carotid. C-reaktive protein, interleukin-6,fibrinogen, ultrasonography, pneumonia

Sažetak


Cilj. Ispitivanje debljine intimomedijalnog kompleksa karotidnih arterija u COVID 19 infekciji.

 Metode. Kod 50 pacijenata sa PCR(+) testom merena je debljina intimomedijalnog kompleksa(IMT) u zajedničkim karotidnim arterijama. Vrednosti su uporedjene sa kontrolnom grupom 2006-9god. Stanje pluća ocenjeno je sonografijom- lak (0-14) ili srednje težak kovid ( 15-28). Beleženi su rizikofaktori zadebljanja IMT i vrednost fibrinogena, IL-6  i CRP. Formirana su dva modela predvidjanja IMT. Sociepidemiološki model predvidja razvoj IMT na osnovu epidemioloških faktora. Drugi model, osim ovih faktora uključuje i vrednosti navedenih biomarkera.

Resultati. It skor pluća 20±6, 18% lak i 82% srednje težak COVID-19; IMT desno 1,024±0,272mm i levo 0,999±0,224( razlika strana nema p=0,379). Kontrolna grupa IMT 0,78±0,27mm i levo 0,79±0,27mm( nema razlike strana p=0,864). Razlika grupa/kontrola je visoko značajna ( p=0,000). Epidemiološki model: logit (IMT)= 4,463+(2,021+vrednost za GEN)+ (0,055xvrednost za AGE)+)-3.419x vrednost za RF)+(-4.447x vrednost za SM)+(5,115xvrednost za HTA)+(3,56x vrednost zaDM)+(22,389x vrednost za LIP)+(24,206x vrednost za KVO)+( 1,449x vrednost za drugo)+(-0,138xvrednost za It skor)+(0,19x vrednost za BMI). Epidemiološko-inflamatorni model: logit(IMT)=5,204+(2,545x vrednost GEN)+(0,076x vrednost za AGE)+(-6,132xvrednost za RF)+(-7,583x vrednost za SM)+(8,744x vrednost za HTA)+ (6,838x vrednost za DM)+(25,446x vrednost za LIP)+(28,825x vrednost za KVO)+(2,487 x vrednost za drugo)+(-0,218x vrednost za It skor)+( 0,649x vrednost za BMI)+(-0,194x vrednost za fibrinogen)+(0,894x vrednost za IL-6)+( 0,659x vrednost za CRP). Vrednosti za oba modela Exp(B)=4,882; P of sample=0,83;logit=-0,19; OR=23,84;preciznost modela 87% i 88% ( prvi, drugi model, redom); Omnibus test prvog modela χ2=34,324;p=0,000; koeficijent verodostojnosti –2LogLH=56, 854 Omnibus test drugog modela χ2=39,774;p=0,000; -2LogLH=51,403.

Zaključak. Starenje krvnih sudova u COVID 19 se može predvideti.

Skraćenice: IMT- zadebljanje intimomedijalnog kompleksa; GEN- pol; AGE- starost; RF- broj rizikofaktora; DM-dijabetes; SM-pušenje; HTA-hipertenzija; LIP-lipidemija;KVO- kardiovaskularna oboljenja; drugo- druga oboljenja od značaja za IMT; BMI- indeks telesne mase.

Reference

References
1. Willeit P., Tschiderer L. , Allara E. , Reuber K., Seekircher L. , Gao L. et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation. 2020;142(7):621-42. doi: 10.1161/CIRCULATIONAHA.120.046361.
2. Murray Ch.S.G. , Nahar T. , Kalashyan H., Becher H., Nanda N.C.. Ultrasound assessment of carotid arteries: Current concepts, methodologies, diagnostic criteria, and technological advancements. Echocardiography. 2018;35(12):2079-91. doi: 10.1111/echo.14197.
3. Touboul P.J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007;23(1):75-80. doi: 10.1159/000097034.
4. Liu Y., Zhang H.G.. Vigilance on New-Onset Atherosclerosis Following SARS-CoV-2 Infection. Front Med (Lausanne) 2021;7:629413. doi: 10.3389/fmed.2020.629413.
5. O'ConnorS., Taylor C., Campbell LA., Epstein S., and Libby P.. Potential infectious etiologies of atherosclerosis: a multifactorial perspective. Emerg Infect Dis. 2001; 7(5): 780–8. doi: 10.3201/eid0705.010503
6. Ristić G.G., Lepić T., Glisić B., Stanisavljević D., Vojvodić D., Petronijević M., Stefanović D. Rheumatoid arthritis is an independent risk factor for increased carotid intima-media thickness: impact of anti-inflammatory treatment. Rheumatology (Oxford). 2010;49(6):1076-81. doi: 10.1093/rheumatology/kep456.
7. Najjar S.S., Scuteri A., Lakatta E.G.. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 2005;46(3):454-62. doi: 10.1161/01.HYP.0000177474.06749.98.
8. Spence J.D. . IMT is not atherosclerosis. Atherosclerosis . 2020;312:117-8. doi: 10.1016/j.atherosclerosis.2020.09.016.
9. Raggi P., Stein J.H. . Carotid intima-media thickness should not be referred to as subclinical atherosclerosis: A recommended update to the editorial policy at Atherosclerosis. Atherosclerosis 2020;312:119-20. doi: 10.1016/j.atherosclerosis.2020.09.015.
10. Hemmat N., Ebadi A. , Badalzadeh R., Memar M.Y. , Baghi H.B.. Viral infection and atherosclerosis. Eur J Clin Microbiol Infect Dis. 2018;37(12):2225-33. doi: 10.1007/s10096-018-3370-z.
11. Campbell L.A. and Rosenfeld M.E. Infection and Atherosclerosis Development. Arch Med Res. 2015; 46(5): 339–50. doi: 10.1016/j.arcmed.2015.05.006
12. Ibrahim A.I., Obeid M.T., Jouma M.J., Moasis G.A., Al-Richane W.A., Kindermann I., Boehm M., et al.Detection of herpes simplex virus, cytomegalovirus and Epstein-Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J Clin Virol 2005; 32(1): 29-32. doi: 10.1016/j.jcv.2004.06.010.
13. Fong I.W. Antibiotic effects in rabbit model of Chlamydia pneumoniae-induced atherosclerosis. J Infect Dis . 2000;181: Suppl 3: 514-8. doi: 10.1086/315607.
14. Muhlestein J.B., Anderson J.L., Hammond E.H., Zhao L., Trehan S., Schwobe EP, Carlquist J.F. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azthromycin prevents it in a rabbit model. Circulation 1998;97(7):633-6. doi: 10.1161/01.cir.97.7.633.
15. Zeng H., Pappas C., Belser J.A., Houser K.H., Zhong W., Wadford D.A., et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol 2012;86(2):667-78. doi: 10.1128/JVI.06348-11.
16. Aird W.C.Phenotypic heterogenity of the endothelium: II.Representative vascular beds. Circ Res 2007;100(2):174-90. doi: 10.1161/01.RES.0000255690.03436.ae.
17. Soldati G., Smargiassi A., Inchingolo R., Buonsenso D., Perrone T., Briganti D.F., et al. Is there a role for lung ultrasound during the COVID-19 pandemic. J Ultrasound Med. 2020; 39(7): 1459–62. doi: 10.1002/jum.15284
18. Jin Y., Ji W., Yang H., Chen S., Zhang W., Duan G.. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther 2020;5(1):293. doi: 10.1038/s41392-020-00454-7.
19. Das D.,Podder S. 2 Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput Biol Med 2021;134:104459. doi: 10.1016/j.compbiomed.2021.104459.
20. Ralph L Nachman, Shahin Rafii . Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 2008;359(12):1261-70. doi: 10.1056/NEJMra0800887.
21. Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 2020; 4(12): 2850. doi: 10.1182/bloodadvances.2020002197
22. Klok F.A., Kruip M.J.H.A., van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM , et al. Incidence of thrombotic complicationa in critically ill ICU patients with COVID-19. Thromb Res 2020; 191:145-7. doi: 10.1016/j.thromres.2020.04.013.
23. Wang L. C-reactive protein levels in the aerly stage of COVID-19. Med. Mal. Infect 2020; 50(4): 332-4. doi: 10.1016/j.medmal.2020.03.007.
24. Luo X., Zhou W., Yan X., Guo T., Wang B., Xia H. et al.Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis 2020; 71(16):2174-9. doi: 10.1093/cid/ciaa641.
25. Melnikov S.I., Kozlov S.G., Saburova O.S., Avtaeva Y.N., ProkofievaL.V., Gabbasov Z.A. Current position on the role of monometric C-reactive protein in vascular pathology and atherothrombosis. Curr Pharm Des 2020;26(1):37-43. doi: 10.2174/1381612825666191216144055.
26. Panigada M., Bottino N., Tagliabue P., Grasselli G., Novembrino C., Chantarangkul V. et al. Hypercoagulability in COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost 2020;18(7):1738-42. doi: 10.1111/jth.14850.
27. Ranucci M., Ballotta A., Di Dedda U., Baryshnikova E, Dei Poli M., Resta M. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020;18(7):1747-51. doi: 10.1111/jth.14854.
28. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patiens infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5
29. Liu F., Long X.,Ji G.,Zhang B.,Zhang W., Zhang Z.,et al. Clinicaly significant portal hypertension in cirrhosis patients with COVID-19: clinical characteristics and outcomes. J Infect. 2020; 81(2): 178–80. doi: 10.1016/j.jinf.2020.06.029
30. Ataie-Kachoie P., Pourgholami M.H., Richardson D.R., Morris D.L.. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol 2014;67(11):932-7. doi: 10.1136/jclinpath-2014-202493.
31. Didion SP.Cellular and oxydative mechanisms associated with interleuking-6 signaling in the vasculature. Int J Mol Sci. 2017 Dec; 18(12): 2563. doi: 10.3390/ijms18122563
32. Jovanikić O., Lepić T., Raicević R., Veljancić D., Ristić A., Gligić B. Intimomedial thickness of the vertebral arteries complex: a new useful parameter for the assessment of atheroclerotic process? Vojnosanit Pregl 2011;68(9):733-8. doi: 10.2298/vsp1109733j.
33. Centers for Diseses Control and Prevention; Saving Lives, Protecting PeopleTM https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html, CDC24/7.
Objavljeno
2022/12/05
Rubrika
Original paper