Association of Fibrinogen and Plasmin Inhibitor, but not Coagulation Factor XIII Gene Polymorphisms with Coronary Artery Disease

Keywords: coronary artery disease, FXIII, fibrinogen, genotyping, plasmin inhibitor, polymorphisms

Abstract


Background: In the final phase of cloth formation, fibri(noge)n constitutes frame whereas factor XIII (FXIII) active form is responsible for the covalent cross-linking of fibrin fibers and plasmin inhibitor (PI), thus contributing to clot stability. It could be expected that any change of coagulation factors’ structure affects the clot formation and modulate the atherothrombotic risk. The aim was to determine the frequency of four single nucleotide polymorphisms: (i) A>G in codon 312 of the fibrinogen α-chain gene (rs6050, Thr312Ala FGA), (ii) C>T at position 10034 of the 3´untranslated region in the fibrinogen γ-chain gene (rs2066865, 10034C>T FGG), (iii) C>T in codon 564 of the FXIII-A subunit gene (rs5982, Pro564Leu FXIII-A), and (iv) C>T in codon 6 of the plasmin inhibitor gene (rs2070863, Arg6Trp PI) in Croatian patients and their association with coronary artery disease (CAD).

Methods: We performed the unrelated case-control association study on the consecutive sample of patients ≥18 years old, who had undergone coronary angiography for investigation of chest pain and suspected CAD. Cases were patients with confirmed CAD (N=201) and controls were the subjects with no CAD (N=119). Samples were genotyped using PCR-RFLP analysis.

Results: Observed frequencies of the rare alleles of Thr312Ala FGA, 10034C>T FGG, Leu564Pro FXIII-A and Arg6Trp PI polymorphisms were 21%, 17%, 14%, 20%, respectively. Patients with 10034C> T FGG CC genotype had 3.5 times (95% CI 1.02-12.03) higher adjusted odds for CAD than patients with 10034C> T FGG TT genotype. Patients with Arg6Trp PI CC genotype had 3.86 times (95% CI 1.23-12.12) higher odds for CAD than patients with Arg6Trp PI TT genotype. No difference was observed regarding any other investigated polymorphism,

Conclusion: Our finding suggests that 10034C>T FGG and Arg6Trp PI are associated with CAD.

References

1. Roberts R, Stewart AFR. Genes and coronary artery disease: where are we? J Am Coll Cardiol 2012; 60(18): 1715–21. doi.org/10.1016/j.jacc.2011.12.062.
2. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014; 16(5): 479. doi.org/10.1007/s11886-014-0479-2.
3. Björkegren JLM, Kovacic JC, Dudley JT, Schadt EE. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 2015; 65(8): 830–845. doi.org/10.1016/j.jacc.2014.12.033.
4. Spronk HMH et al. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118(2): 229–250. doi.org/10.1160/TH17-07-0492.
5. Pranavchand R, Reddy BM. Current status of understanding of the genetic etiology of coronary heart disease. J Postgrad Med 2013; 59(1): 30–41. doi.org/10.4103/0022-3859.109492.
6. Saleh M, Ambrose JA. Understanding myocardial infarction. F1000Research 2018; 7(0): 1–8. doi.org/10.12688/f1000research.15096.1.
7. Feinbloom D, Bauer KA. Assessment of hemostatic risk factors in predicting arterial thrombotic events. Arterioscler Thromb Vasc Biol 2005; 25(10): 2043–53. doi.org/10.1161/01.ATV.0000181762.31694.da.
8. Siegerink B, Algra A, Rosendaal FR. Genetic variants of coagulation factor XIII and the risk of myocardial infarction in young women. Br J Haematol 2009; 146(4): 459–61. doi.org/10.1111/j.1365-2141.2009.07805.x.
9. Ariëns RAS. Novel mechanisms that regulate clot structure/function. Thromb Res 2016; 141 Suppl S25-7. doi.org/10.1016/S0049-3848(16)30358-9.
10. Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2017; 37(3): e13–e21. doi.org/10.1161/ATVBAHA.117.308564.
11. Standeven KF, Ariëns RAS, Grant PJ. The molecular physiology and pathology of fibrin structure/function. Blood Rev 2005; 19(5): 275–88. doi.org/10.1016/j.blre.2005.01.003.
12. Hethershaw EL et al. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost 2014; 12(2): 197–205. doi.org/10.1111/jth.12455.
13. Rijken DC, Uitte de Willige S. Inhibition of Fibrinolysis by Coagulation Factor XIII. Biomed Res Int 2017; 2017 1209676. doi.org/10.1155/2017/1209676.
14. Hethershaw EL et al. The role of β-barrels 1 and 2 in the enzymatic activity of factor XIII A-subunit. J Thromb Haemost 2018; 16(7): 1391–1401. doi.org/10.1111/jth.14128.
15. Anokhin BA et al. Proteolytic and nonproteolytic activation mechanisms result in conformationally and functionally different forms of coagulation factor XIII A. FEBS J 2019; 1–13. doi.org/10.1111/febs.15040.
16. Standeven KF, Grant PJ, Carter AM, Scheiner T, Weisel JW, Ariëns RAS. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation 2003; 107(18): 2326–30. doi.org/10.1161/01.CIR.0000066690.89407.CE.
17. Cooper A V., Standeven KF, Ariëns RAS. Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 2003; 102(2): 535–40. doi.org/10.1182/blood-2002-10-3150.
18. Gallivan L, Markham AF, Anwar R. The Leu564 factor XIIIA variant results in significantly lower plasma factor XIII levels than the Pro564 variant. Thromb Haemost 1999; 82(4): 1368–70. http://www.ncbi.nlm.nih.gov/pubmed/10544937 (accessed April 13, 2017).
19. Christiansen VJ, Jackson KW, Lee KN, McKee PA. The effect of a single nucleotide polymorphism on human alpha 2-antiplasmin activity. Blood 2007; 109(12): 5286–92. doi.org/10.1182/blood-2007-01-065185.
20. Bronić A, Ferencak G, Zadro R, Stavljenić-Rukavina A, Bernat R. Impact of FXIII-A Val34Leu polymorphism on coronary artery disease in Croatian patients. Mol Biol Rep 2009; 36(1): 1–5. doi.org/10.1007/s11033-007-9144-9.
21. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16(3): 1215. doi.org/10.1093/nar/16.3.1215.
22. R free software. Available at: https://www.r-project.org/ (accessed January 2019)
23. Reference SNP (rs) report. Available at: https://www.ncbi.nlm.nih.gov/snp/rs6050#frequency_tab (accessed February 2020)
24. Lim BCB, Ariëns RAS, Carter AM, Weisel JW, Grant PJ. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet (London, England) 2003; 361(9367): 1424–31. doi.org/10.1016/S0140-6736(03)13135-2.
25. Undas A, Ariëns RAS. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31(12): e88-99. doi.org/10.1161/ATVBAHA.111.230631.
26. Collet JP, Nagaswami C, Farrell DH, Montalescot G, Weisel JW. Influence of gamma’ fibrinogen splice variant on fibrin physical properties and fibrinolysis rate. Arterioscler Thromb Vasc. Biol 2004; 24(2): 382–6. doi.org/10.1161/01.ATV.0000109748.77727.3e.
27. Carter AM, Catto AJ, Grant PJ. Association of the alpha-fibrinogen Thr312Ala polymorphism with poststroke mortality in subjects with atrial fibrillation. Circulation 1999; 99(18): 2423–6. doi.org/10.1161/01.cir.99.18.2423.
28. Siegerink B, Rosendaal FR, Algra A. Genetic variation in fibrinogen; its relationship to fibrinogen levels and the risk of myocardial infarction and ischemic stroke. J Thromb Haemost 2009; 7(3): 385–90. doi.org/10.1111/j.1538-7836.2008.03266.x.
29. Rasmussen-Torvik LJ et al. The association of alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism in the LITE study. Thromb Res 2007; 121(1): 1–7. doi.org/10.1016/j.thromres.2007.02.008.
30. Le Gal G et al. Fibrinogen Aalpha-Thr312Ala and factor XIII-A Val34Leu polymorphisms in idiopathic venous thromboembolism. Thromb Res 2007; 121(3): 333–8. doi.org/10.1016/j.thromres.2007.05.003.
31. Gohil R, Peck G, Sharma P. The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 2009; 102(2): 360–70. doi.org/10.1160/TH09-01-0013.
32. Li J-F et al. Fibrinogen Aα Thr312Ala polymorphism specifically contributes to chronic thromboembolic pulmonary hypertension by increasing fibrin resistance. PLoS One 2013; 8(7): e69635. doi.org/10.1371/journal.pone.0069635.
33. Jagiełła J et al. The FGA Thr312Ala polymorphism and risk of intracerebral haemorrhage in Polish and Greek populations. Neurol Neurochir Pol 2014; 48(2): 105–10. doi.org/10.1016/j.pjnns.2013.12.004.
34. Kamimoto Y et al. Hypofibrinogenemia and the α-Fibrinogen Thr312Ala Polymorphism may be Risk Factors for Early Pregnancy Loss. Clin Appl Thromb Hemost 2017; 23(1): 52–57. doi.org/10.1177/1076029615594003.
35. Uitte de Willige S, de Visser MCH, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood 2005; 106(13): 4176–83. doi.org/10.1182/blood-2005-05-2180.
36. Grünbacher G et al. The fibrinogen gamma (FGG) 10034C>T polymorphism is associated with venous thrombosis. Thromb Res 2007; 121(1): 33–6. doi.org/10.1016/j.thromres.2007.03.007.
37. Nowak-Göttl U et al. Fibrinogen alpha and gamma genes and factor VLeiden in children with thromboembolism: results from 2 family-based association studies. Blood 2009; 114(9): 1947–53. doi.org/10.1182/blood-2009-04-218727.
38. Uitte de Willige S et al. Fibrinogen gamma gene 3’-end polymorphisms and risk of venous thromboembolism in the African-American and Caucasian population. Thromb Haemost 2009; 101(6): 1078–84. doi.org/10.1160/TH08-12-0813.
39. Lovely RS et al. Assessment of genetic determinants of the association of γ’ fibrinogen in relation to cardiovascular disease. Arterioscler Thromb Vasc Biol 2011; 31(10): 2345–52. doi.org/10.1161/ATVBAHA.111.232710.
40. Hinds DA et al. Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis. Hum Mol Genet 2016; 25(9): 1867–74. doi.org/10.1093/hmg/ddw037.
41. Jiang J et al. Associations between polymorphisms in coagulation-related genes and venous thromboembolism: A meta-analysis with trial sequential analysis. Medicine (Baltimore). 2017; 96(13): e6537. doi.org/10.1097/MD.0000000000006537.
42. Paulsen B et al. Fibrinogen gamma gene rs2066865 and risk of cancer-related venous thromboembolism. Haematologica 2019; haematol.2019.224279. doi.org/10.3324/haematol.2019.224279.
43. Reference SNP (rs) report. Available at: https://www.ncbi.nlm.nih.gov/snp/rs2066865#frequency_tab (accessed February 2020)
44. Ko Y-L et al. Functional polymorphisms of FGA, encoding alpha fibrinogen, are associated with susceptibility to venous thromboembolism in a Taiwanese population. Hum Genet 2006; 119(1–2): 84–91. doi.org/10.1007/s00439-005-0102-0.
45. Duval C, Ariëns RAS. Fibrinogen splice variation and cross-linking: Effects on fibrin structure/function and role of fibrinogen γ’ as thrombomobulin II. Matrix Biol. 2017;60–61 8–15. doi.org/10.1016/j.matbio.2016.09.010.
46. Reiner AP et al. Genetic variants of coagulation factor XIII, postmenopausal estrogen therapy, and risk of nonfatal myocardial infarction. Blood 2003; 102(1): 25–30. doi.org/10.1182/blood-2002-07-2308.
47. Pruissen DMO, Slooter AJC, Rosendaal FR, van der Graaf Y, Algra A. Coagulation factor XIII gene variation, oral contraceptives, and risk of ischemic stroke. Blood 2008; 111(3): 1282–6. doi.org/10.1182/blood-2007-08-110254.
48. Lind B, Thorsen S. A novel missense mutation in the human plasmin inhibitor (alpha2-antiplasmin) gene associated with a bleeding tendency. Br J Haematol 1999; 107(2): 317–22. doi.org/10.1046/j.1365-2141.1999.01708.x.
49. Abdul S, Leebeek FWG, Rijken DC, Uitte de Willige S. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood 2016; 127(5): 538–45. doi.org/10.1182/blood-2015-09-670117.
50. Schunkert H et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43(4): 333–8. doi.org/10.1038/ng.784.
51. Webb TR et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease. J Am Coll Cardiol 2017; 69(7): 823–836. doi.org/10.1016/j.jacc.2016.11.056.
52. Peden JF et al. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011; 43(4): 339–346. doi.org/10.1038/ng.782.
53. Nikpay M et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47(10): 1121–1130. doi.org/10.1038/ng.3396.
54. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 1994; 330(15): 1041–6. doi.org/10.1056/NEJM199404143301503.
Published
2020/09/08
Section
Original paper