Dr Malondialdehyde as an independent predictor of body mass index in adolescent girls

  • Aleksandra Klisic
Keywords: adolescents, inflammation, obesity, oxidative stress

Abstract


Objective: Given the fact that the studies that examined oxidative stress in relation to obesity that included late adolescents are scarce and show inconclusive results we aimed to investigate a wide spectrum of nitro-oxidative stress biomarkers [i.e., malondialdehyde (MDA), xanthine oxidase (XO), xanthine oxidoreductase (XOD), xanthine dehydrogenase (XDH), advanced oxidation protein products (AOPP) and nitric oxide products (NOx), as well as an antioxidative enzyme, i.e., catalase (CAT)] in relation with obesity in the cohort of adolescent girls ages between 16 and 19 years old.
Patients and Methods: A total of 59 teenage girls were included in this cross-sectional study. Binary logistic regression analysis was performed to examine possible associations between biochemical and nitro-oxidative stress markers and body mass index (BMI).
Results: There were not significant differences between oxidative stress markers between normal weight and overweight/obese girls (i.e., AOPP, XOD, XO, XDH) and CAT, except for MDA (p<0.001) and NOx (p=0.010) concentrations which were significantly higher in overweight/obese adolescent girls. Positive associations were evident between BMI and high sensitivity C-reactive protein (hsCRP) (OR=2.495), BMI and uric acid (OR=1.024) and BMI and MDA (OR=1.062). Multivariable binary regression analysis demonstrated significant independent associations of BMI and hsCRP (OR=2.150) and BMI and MDA (OR=1.105). Even 76.3% of the variation in BMI could be explained with this Model.
Conclusion: Inflammation (as measured with hsCRP) and oxidative stress (as determined with MDA) independently correlated with BMI in teenage girls.

References

1. Barber TM, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf) 2021;95(4):531-541. doi: 10.1111/cen.14421.
2. ThorandB, BaumertJ, Kolb H, Meisinger C, ChamblessL, KoenigW, et al. Sex differences in the prediction of type 2 diabetes by inflammatory markers: Results from the MONICA/KORA Augsburg case cohort study, 1984 2002. Diabetes Care 2007;30:854 860.
3. Nittari G, Scuri S, Petrelli F, Pirillo I, di Luca NM, Grappasonni I. Fighting obesity in children from European World Health Organization member states. Epidemiological data, medical-social aspects, and prevention programs. Clin Ter 2019;170(3):e223-e230. doi: 10.7417/CT.2019.2137.
4. Okeyo AP, Seekoe E, de Villiers A, Faber M, Nel JH, Steyn NP. Dietary Practices and Adolescent Obesity in Secondary School Learners at Disadvantaged Schools in South Africa: Urban-Rural and Gender Differences. Int J Environ Res Public Health 2020;17(16):5864. doi: 10.3390/ijerph17165864.
5. Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr 2021;8:581461. doi: 10.3389/fped.2020.581461.
6. Barber TM, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf) 2021;95(4):531-541. doi: 10.1111/cen.14421.
7. Klisic A, Kavaric N, Ninic A. Serum uric acid, triglycerides and total bilirubin are associated with Hepatic Steatosis Index in adolescent population. Preventivna Pedijatrija 2020;6(1-2):71-76.
8. Klisic A, Isakovic A, Kocic G, Kavaric N, Jovanovic M, Zvrko E, Skerovic V, Ninic A. Relationship between Oxidative Stress, Inflammation and Dyslipidemia with Fatty Liver Index in Patients with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2018;126(06):371-378. doi: 10.1055/s-0043-118667.
9. Klisic A, Kavaric N, Soldatovic I, Bjelakovic B, Kotur-Stevuljevic J. Relationship between cardiovascular risk score and traditional and nontraditional cardiometabolic parameters in obese adolescent girls. J Med Biochem 2016;35(3):282-292. doi: 10.1515/jomb-2016-0005
10. Hertiš Petek T, Petek T, Močnik M, Marčun Varda N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants (Basel) 2022;11(5):894. doi: 10.3390/antiox11050894.
11. Cammisotto V, Nocella C, Bartimoccia S, Sanguigni V, Francomano D, Sciarretta S, Pastori D, Peruzzi M, Cavarretta E, D'Amico A, Castellani V, Frati G, Carnevale R, Group S. The Role of Antioxidants Supplementation in Clinical Practice: Focus on Cardiovascular Risk Factors. Antioxidants (Basel) 2021;10(2):146. doi: 10.3390/antiox10020146.
12. Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol 2021;17:575–590.
13. Kong AS, Lai KS, Hee CW, Loh JY, Lim SHE, Sathiya M. Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression. Antioxidants (Basel) 2022;11(6):1175. doi: 10.3390/antiox11061175.
14. Klisic A, Kocic G, Kavaric N, Jovanovic M, Stanisic V, Ninic A. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population. Eat Weight Disord – St 2020;25(1):9-15. doi: 10.1007/s40519-018-0490-5.
15. Bibiloni Mdel M, Pons A, Tur JA. Prevalence of overweight and obesity in adolescents: a systematic review. ISRN Obes 2013;2013:392747. doi: 10.1155/2013/392747.
16. Klisic A, Kocic G, Kavaric N, Pavlovic R, Soldatovic I, Ninic A. Nitric oxide products are not associated with metabolic syndrome. J Med Biochem 2019;38:361-367. doi: 10.2478/jomb-2018-0035.
17. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49:1304-1313.
18. Kizaki H, Sakurada T. Simple micro-assay methods for enzymes of purine metabolism. J Lab Clin Med 1977;89(5):1135–1144.
19. Navarro-Gonzales JA, Garcia-Benayas C, Arenos J. Semiautomated measurement of nitrate in biological fluids. Clin Chem 1998;44:679-81.
20. Girotti MJ, Khan N, McLellan BA. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma 1991;31(1):32-35. doi: 10.1097/00005373-199101000-00007.
21. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991;196(2–3):143–151.
22. Klisic A, Kavaric N, Kotur-Stevuljevic J, Ninic A. Serum soluble transferrin receptor levels are independently associated with homeostasis model assessment of insulin resistance in adolescent girls. Arch Med Sci 2021; doi: https://doi.org/10.5114/aoms/132757.
23. Klisic A, Kavaric N, Ninic A. Serum Cystatin C levels are associated with Triglycerides/High-density lipoprotein cholesterol ratio in adolescent girls ages between 16-19 years old. Eur Rev Med Pharmacol Sci 2020;24(20):10680-10686. doi: 10.26355/eurrev_202010_23426
24. Klisic A, Radoman Vujačić I, Vučković Lj, Ninic A. Total leukocyte count, leukocyte subsets and their indexes in relation to cardiovascular risk in adolescent population. Eur Rev Med Pharmacol Sci 2021;25:3038-3044. doi: 10.26355/eurrev_202104_25557.
25. Klisic A, Kavaric N, Jovanovic M, Soldatovic I, Gligorovic-Barhanovic N, Kotur-Stevuljevic J. Bioavailable testosterone is independently associated with fatty liver index in postmenopausal women. Arch Med Sci 2017;5(13):1188-1196. doi: 10.5114/aoms.2017.68972
26. Dokumacioglu E, Iskender H, Sahin A, Erturk EY, Kaynar O. Serum levels of nesfatin-1 and irisin in obese children. Eur Cytokine Netw. 2020;31(1):39-43. doi: 10.1684/ecn.2020.0444.
27. Zalewska A, Kossakowska A, Taranta-Janusz K, Zięba S, Fejfer K, Salamonowicz M, Kostecka-Sochoń P, Wasilewska A, Maciejczyk M. Dysfunction of Salivary Glands, Disturbances in Salivary Antioxidants and Increased Oxidative Damage in Saliva of Overweight and Obese Adolescents. J Clin Med 2020;9(2):548. doi: 10.3390/jcm9020548.
28. Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, Bouzas C, Mateos D, Pons A, Tur JA, Sureda A. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants (Basel) 2020;9(3):236. doi: 10.3390/antiox9030236.
29. 21. Shahrokhi SA, Naeini AA. The association between dietary antioxidants, oxidative stress markers, abdominal obesity and polycystic ovary syndrome: a case control study. J Obstet Gynaecol 2020;40(1):77–82.
30. Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. Int J Clin Pract 2022;2022:4579831. doi: 10.1155/2022/4579831.
31. García-Sánchez A, Gámez-Nava JI, Díaz-de la Cruz EN, Cardona-Muñoz EG, Becerra-Alvarado IN, Aceves-Aceves JA, Sánchez-Rodríguez EN, Miranda-Díaz AG. The Effect of Visceral Abdominal Fat Volume on Oxidative Stress and Proinflammatory Cytokines in Subjects with Normal Weight, Overweight and Obesity. Diabetes Metab Syndr Obes 2020;13:1077-1087. doi: 10.2147/DMSO.S245494.
32. Perovic Blagojevic IM, Vekic JZ, Macut DP, Ignjatovic SD, Miljkovic-Trailovic MM, Zeljkovic AR, Spasojevic-Kalimanovska VV, Bozic-Antic IB, Bjekic-Macut JD, Kastratovic-Kotlica BA, Andric ZG, Ilic DS, Kotur-Stevuljevic JM. Overweight and obesity in polycystic ovary syndrome: association with inflammation, oxidative stress and dyslipidaemia. Br J Nutr 2021:1-9. doi: 10.1017/S0007114521003585.
33. Adenan DM, Jaafar Z, Jayapalan JJ, Abdul Aziz A. Plasma antioxidants and oxidative stress status in obese women: correlation with cardiopulmonary response. PeerJ 2020;8:e9230. doi: 10.7717/peerj.9230.
34. Costa-Urrutia P, Flores-Buendía AM, Ascencio-Montiel I, Solares-Tlapechco J, Medina-Campos ON, Pedraza-Chaverri J, Granados J, Jiménez-Osorio AS, Rodríguez-Arellano ME. Antioxidant Enzymes Haplotypes and Polymorphisms Associated with Obesity in Mexican Children. Antioxidants (Basel) 2020;9(8):684. doi: 10.3390/antiox9080684.
35. Mizgier M, Jarząbek-Bielecka G, Wendland N, Jodłowska-Siewert E, Nowicki M, Brożek A, Kędzia W, Formanowicz D, Opydo-Szymaczek J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients 2021;13(3):896. doi: 10.3390/nu13030896.
36. Aztatzi-Aguilar OG, Sierra-Vargas MP, Ortega-Romero M, Jiménez-Corona AE. Osteopontin's relationship with malnutrition and oxidative stress in adolescents. A pilot study. PLoS One 2021;16(3):e0249057. doi: 10.1371/journal.pone.0249057.
37. Boarescu PM, Boarescu I, Pop RM, Roşian ŞH, Bocșan IC, Rus V, Mada RO, Popa ID, Neagu N, Bulboacă AE, Buzoianu AD, Bolboacă SD. Evaluation of Oxidative Stress Biomarkers, Pro-Inflammatory Cytokines, and Histological Changes in Experimental Hypertension, Dyslipidemia, and Type 1 Diabetes Mellitus. Int J Mol Sci 2022;23(3):1438. doi: 10.3390/ijms23031438.
38. Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab 2003;285(2):E295–302.
39. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114(12):1752–1761.
40. Maslov LN, Naryzhnaya NV, Boshchenko AA, Popov SV, Ivanov VV, Oeltgen PR. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? J Clin Transl Endocrinol 2018;15:1-5. doi: 10.1016/j.jcte.2018.11.001.
41. Klisic A, Kavaric N, Vujcic S, Spasojevic-Kalimanovska V, Ninic A, Kotur-Stevuljevic J. Endocan and advanced oxidation protein products in adult population with hypertension. Eur Rev Med Pharmacol Sci 2020;24(12):7131-7137. doi: 10.26355/eurrev_202006_21707.
42. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM. Xanthine oxidoreductase is a regulator of adipogenesis and PPAR gamma activity. Cell Metab 2007;5(2):115–128. https://doi.org/10.1016/j. cmet.2007.01.005.
43. Tam HK, Kelly AS, Metzig AM, Steinberger J, Johnson LA. Xanthine oxidase and cardiovascular risk in obese children. Child Obes 2014;10(2):175–180. https://doi.org/10.1089/chi.2013.0098.
44. Chiney MS, Schwarzenberg SJ, Johnson LA. Altered xanthine oxidase and N-acetyltransferase activity in obese children. Br J Clin Pharmacol 2011;72(1):109–115. https://doi.org/10.111 1/j.1365-2125.2011.03959.x.
Published
2022/10/02
Section
Original paper