Can pharmacogenetics impact the therapeutic effect of cytarabine and anthracyclines in adult acute myeloid leukaemia patients? A Serbian experience

  • Zlatko Pravdić Clinic of Hematology, University Clinical Centre of Serbia, Belgrade
  • Marijana Virijević Clinic of Hematology, University Clinical Centre of Serbia, Belgrade; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Mirjana Mitrović Clinic of Hematology, University Clinical Centre of Serbia, Belgrade; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Nikola Pantić Clinic of Hematology, University Clinical Centre of Serbia, Belgrade
  • Nikica Sabljić Clinic of Hematology, University Clinical Centre of Serbia, Belgrade
  • Đorđe Pavlović Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
  • Irena Marjanović
  • Zoran Bukumirić Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Ana Vidović Clinic of Hematology, University Clinical Centre of Serbia, Belgrade; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Ljubomir Jaković Clinic of Hematology, University Clinical Centre of Serbia, Belgrade
  • Sonja Pavlović Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
  • Nada Suvajdžić Clinic of Hematology, University Clinical Centre of Serbia, Belgrade; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Vladimir Gasic Institute of Molecular Genetics and Genetic Engineering
Keywords: AML, Anthracyclines, Cytarabine, Pharmacogenetic variants

Abstract


Background. Cytarabine-anthracycline based induction chemotherapy remains the standard of care for remission induction among patients with newly diagnosed acute myeloid leukaemia (AML). There are remarkable differences in therapy response among AML patients. This fact could be partly explained by the patients’ genetic variability related to metabolic paths of cytarabine and anthracyclines. The aim of this study is to evaluate the effect of variants in pharmacogenes SLC29A1, DCK, ABCB1, GSTM1 and GSTT1, as well as laboratory and AML-related parameters on clinical outcome in adult AML patients.

Methods. A total of 100 AML patients were included in the study. Pharmacogenetic variants SLC29A1 rs9394992, DCK rs12648166, ABCB1 rs2032582 and GSTM1 and GSTT1 gene deletions were detected by methodology based on PCR, fragment analysis and direct sequencing. The methods of descriptive and analytic statistics were used. Survival analysis was done by the Kaplan-Meier method using the Log-Rank test.

Results. This is the first study of adult AML pharmacogenetics in Serbian population. Clinical outcomes in our cohort of AML patients were not impacted by analysed variants in SLC29A1, DCK, ABCB1and GSTT1 and GSTM1 genes, independently or in combinations. Achievement of complete remission was identified as an independent prognostic indicator of clinical outcome.

Conclusions. The population specific genomic profile has to be considered in pharmacogenetics. Since the data on AML pharmacogenetics in European populations is limited, our results contribute to knowledge in this field and strongly indicate that high-throughput approach has to be applied in order to find particular pharmacogenetic markers of AML in European population.

References


1. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022; 140(12): 1345-1377. doi: 10.1182/blood.2022016867.


2. Megías-Vericat JE, Montesinos P, Herrero MJ, Bosó V, Martínez-Cuadrón D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics 2016; 17(11): 1245-1272. doi: 10.2217/pgs-2016-0055.


3. Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2012; 13(11): 1257-69. doi: 10.2217/pgs.12.102.


4. Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics 2009; 10(10): 1657–74. doi: 10.2217/pgs.09.118.


5. Megias-Vericat JE, Martinez-Cuadron D, Herrero MJ, Alino SF, Poveda JL, Sanz MA, Montesinos P. Pharmacogenetics of Metabolic Genes of Anthracyclines in Acute Myeloid Leukemia. Curr Drug Metab 2018; 19(1): 55-74. doi: 10.2174/1389200218666171101124931.


6. Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022; 14(4): 878. doi: 10.3390/pharmaceutics14040878.


7. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982; 5((6)): 649–55.


8. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, Storer B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106(8): 2912-9. doi: 10.1182/blood-2005-05-2004.


9. Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Leukemia 1996; 10: 877-95.


10. Shaffer LG, Slovak ML, Campbell LJ, editors. ISCN (2009): An international system for human cytogenetics nomenclature. Basel: Karger, 2009.


11. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with normal karyotype. N Engl J Med 2005; 352: 254–266. doi: 10.1056/NEJMoa041974.


12. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia – Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452. doi: 10.1038/sj.leu.2400756.


13. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439. doi: 10.1182/blood.v97.8.2434.


14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162(1): 156-9. doi: 10.1006/abio.1987.9999.


15. Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, et al. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. J Exp Clin Cancer Res 2014; 33(1): 90. doi: 10.1186/s13046-014-0090-9.


16. Xiong J, Altaf K, Ke N, Wang Y, Tang J, Tan C, et al. dCK Expression and Gene Polymorphism With Gemcitabine Chemosensitivity in Patients With Pancreatic Ductal Adenocarcinoma: A Strobe-Compliant Observational Study. Medicine (Baltimore) 2016; 95(10): e2936. doi: 10.1097/MD.0000000000002936.


17. Chen CL, Liu Q, Relling MV. Simultaneous characterization of glutathione s-transferase m1 and t1 polymorphisms by polymerase chain reaction in american whites and blacks. Pharmacogenetics 1996; 6: 187-91. doi: 10.1097/00008571-199604000-00005.


18. Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2021; 138(26): 2753-2767. doi: 10.1182/blood.2021013626.


19. Zhang J, Visser F, King K.M, Baldwin S.A, Young J.D, Cass C.E. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 2007; 26: 85–110. doi: 10.1007/s10555-007-9044-4.


20. Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A, et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol 2002; 117(4): 860-8. doi: 10.1046/j.1365-2141.2002.03538.x.


21. Amaki J, Onizuka M, Ohmachi K, Aoyama Y, Hara R, Ichiki A, et al. Single nucleotide polymorphisms of cytarabine metabolic genes influence clinical outcome in acute myeloid leukemia patients receiving high-dose cytarabine therapy. Int J Hematol 2015; 101(6): 543-53. doi: 10.1007/s12185-015-1766-4.


22. Kim JH, Lee C, Cheong HS, Koh Y, Ahn KS, Kim HL, et al. SLC29A1 (ENT1) polymorphisms and outcome of complete remission in acute myeloid leukemia. Cancer Chemother Pharmacol 2016; 78(3): 533-40. doi: 10.1007/s00280-016-3103-x.


23. Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, et al. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. J Exp Clin Cancer Res 2014; 33(1): 90. doi: 10.1186/s13046-014-0090-9.


24. Galmarini CM, Thomas X, Calvo F, Rousselot P, El Jafaari A, Cros E, Dumontet C. Potential mechanisms of resistance to cytarabine in AML patients. Leuk Res 2002; 26(7): 621-9. doi: 10.1016/s0145-2126(01)00184-9.


25. Kroep JR, Loves WJ, van der Wilt CL, Alvarez E, Talianidis I, Boven E, et al. Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 2002; 1(6): 371-6.


26. Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE, Gottesman MM. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat 2012; 15(1-2): 62-9. doi: 10.1016/j.drup.2012.02.001.


27. Wang X, Wang C, Qin YW, Yan SK, Gao YR. Simultaneous suppression of multidrug resistance and antiapoptotic cellular defense induces apoptosis in chemoresistant human acute myeloid leukemia cells. Leuk Res 2007; 31(7): 989-94. doi: 10.1016/j.leukres.2006.09.001.


28. Svirnovski AI, Shman TV, Serhiyenka TF, Savitski VP, Smolnikova VV, Fedasenka UU. ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells. Hematology 2009; 14(4): 204-12. doi: 10.1179/102453309X426218.


29. Kim DH, Park JY, Sohn SK, Lee NY, Baek JH, Jeon SB, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer 2006; 118(9): 2195-201. doi: 10.1002/ijc.21666.


30. Kim YK, Bae SY, Kim HN, Kim NY, Kim HJ, Bang SM, et al. Prognostic Impact of DNA Repair and MDR-1 Gene Polymorphisms In De Novo Acute Myeloid Leukemia with t(8;21) or Inv(16). Blood 2010; 116: 1714. doi.: 10.1182/blood.V116.21.1714.1714.


31. Gréen H, Falk IJ, Lotfi K, Paul E, Hermansson M, Rosenquist R, et al. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharmacogenomics J 2012; 12(2): 111-8. doi: 10.1038/tpj.2010.79.


32. He H, Yin J, Li X, Zhang Y, Xu X, Zhai M, et al. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur J Clin Pharmacol 2015; 71(3): 293-302. doi: 10.1007/s00228-014-1795-6.


33. Megías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, et al. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: a systematic review and meta-analysis of observational studies. Pharmacogenomics J 2015; 15(2): 109-18. doi: 10.1038/tpj.2014.80.


34. Megías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, et al. Positive impact of ABCB1 polymorphisms in overall survival and complete remission in acute myeloid leukemia: a systematic review and meta-analysis. Pharmacogenomics J 2016; 16(1): 1-2. doi: 10.1038/tpj.2015.79.


35. Illmer T, Schuler US, Thiede C, Schwarz UI, Kim RB, Gotthard S, et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 2002; 62(17): 4955-62.


36. Kaya P, Gündüz U, Arpaci F, Ural AU, Guran S. Identification of polymorphisms on the MDR1 gene among Turkish population and their effects on multidrug resistance in acute leukemia patients. Am J Hematol 2005; 80(1): 26-34. doi: 10.1002/ajh.20427.


37. Van der Holt B, Van den Heuvel-Eibrink MM, Van Schaik RH, Van der Heiden IP, Wiemer EA, Vossebeld PJ, et al. ABCB1 gene polymorphisms are not associated with treatment outcome in elderly acute myeloid leukemia patients. Clin Pharmacol Ther 2006; 80(5): 427-39. doi: 10.1016/j.clpt.2006.07.005.


38. Hampras SS, Sucheston L, Weiss J, Baer MR, Zirpoli G, Singh PK, et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia. Int J Mol Epidemiol Genet 2010; 1(3): 201-7.


39. Jakobsen Falk I, Fyrberg A, Paul E, Nahi H, Hermanson M, Rosenquist R, et al. Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype. Br J Haematol 2014; 167(5): 671-80. doi: 10.1111/bjh.13097.


40. Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma 2017; 58(5): 1197-1206. doi: 10.1080/10428194.2016.1231405.


41. Xiao Q, Deng D, Li H, Ye F, Huang L, Zhang B, et al. GSTT1 and GSTM1 polymorphisms predict treatment outcome for acute myeloid leukemia: a systematic review and meta-analysis. Ann Hematol 2014; 93(8): 1381-90. doi: 10.1007/s00277-014-2050-z.


42. Kim KI, Huh IS, Kim IW, Park T, Ahn KS, Yoon SS, et al. Combined interaction of multi-locus genetic polymorphisms in cytarabine arabinoside metabolic pathway on clinical outcomes in adult acute myeloid leukaemia (AML) patients. Eur J Cancer 2013; 49(2): 403-10. doi: 10.1016/j.ejca.2012.07.022.


43. Lo C, Nguyen S, Yang C, Witt L, Wen A, Liao TV, et al. Pharmacogenomics in Asian Subpopulations and Impacts on Commonly Prescribed Medications. Clin Transl Sci 2020; 13(5): 861-870. doi: 10.1111/cts.12771.


44. Zhang F, Finkelstein J. Inconsistency in race and ethnic classification in pharmacogenetics studies and its potential clinical implications. Pharmgenomics Pers Med 2019; 12: 107-123. doi: 10.2147/PGPM.S207449.

Published
2024/04/26
Section
Original paper