Impact of Transferrin Levels on Iron Accumulation in Transfusion-Dependent Beta-Thalassemia: A Genotype-Specific Analysis
Transferrin Impact on Iron Overload in TDT
Abstract
Background: Serum ferritin (SF) is used to monitor secondary iron overload in beta-thalassemia (β-thalassemia). Transferrin (TRF) has been shown to reverse iron accumulation in experimental models, but its role in transfusion-dependent beta-thalassemia (TDT) patients remains unclear. This study aims to explore the relationship between TRF and SF in TDT patients and to reveal the unique connection between specific genotypes and iron metabolism, providing potential therapeutic targets for clinical practice.
Methods: This cross-sectional study includes 817 TDT patients (β0/β0 genotype: n=560; β0/β+ genotype: n=257). We use genotype-phenotype analysis and employ logistic regression and restricted cubic spline (RCS) curves to assess the association between TRF and SF.
Results: Significant differences were observed between the β0/β0 and β0/β+ genotypes in terms of age at first transfusion, transfusion requirements, chelation initiation age, reticulocyte count, red blood cell count, red cell distribution width-coefficient of variation (RDW-CV), fetal hemoglobin (HbF) level, splenomegaly, and SF. β0/β0 patients presented with more severe clinical phenotypes. SF was significantly associated with TRF, HbF, RDW-CV, and chelation therapy. RCS analysis revealed a dose-response relationship with a negative linear correlation between TRF and SF (OR=0.26, P<0.001), indicating that higher TRF levels are linked to lower SF risk.
Conclusion: This study systematically confirms for the first time a significant negative correlation between high TRF levels and high SF risk in TDT patients. This new finding may help clinicians more effectively manage iron overload, especially in patients with different genotypes.
References
2. Alaithan MA, AbdulAzeez S, Borgio JF. A comprehensive review of the prevalence of beta globin gene variations and the co-inheritance of related gene variants in Saudi Arabians with beta-thalassemia. Saudi Med J. 2018;39(4):329-335. doi:10.15537/smj.2018.4.21360
3. Zhu Y, Shen N, Wang X, Xiao J, Lu Y. Alpha and beta-Thalassemia mutations in Hubei area of China. BMC Med Genet. 2020;21(1):6. Published 2020 Jan 6. doi:10.1186/s12881-019-0925-5
4. Huang Y, Lei Y, Liu R, et al. Imbalance of erythropoiesis and iron metabolism in patients with thalassemia. Int J Med Sci. 2019;16(2):302-310. Published 2019 Jan 1. doi:10.7150/ijms.27829
5. Chauhan W, Shoaib S, Fatma R, Zaka-Ur-Rab Z, Afzal M. Beta-thalassemia and the advent of new interventions beyond transfusion and iron chelation. Br J Clin Pharmacol. 2022;88(8):3610-3626. doi:10.1111/bcp.15343
6. Zhou X, Huang L, Wu J, et al. Impaired bone marrow microenvironment and stem cells in transfusion-dependent beta-thalassemia. Biomed Pharmacother. 2022;146:112548. doi:10.1016/j.biopha.2021.112548
7. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226-239. doi:10.1016/j.redox.2015.07.018
8. Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260-272. Published 2020 Jan 31. doi:10.3324/haematol.2019.232124
9. Parmar JH, Mendes P. A computational model to understand mouse iron physiology and disease. PLoS Comput Biol. 2019;15(1):e1006680. Published 2019 Jan 4. doi:10.1371/journal.pcbi.1006680
10. Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2):177-182. doi:10.1038/nm.2073
11. Shah M, Danish L, Khan NU, et al. Determination of mutations in iron regulating genes of beta thalassemia major patients of Khyber Pakhtunkhwa, Pakistan. Mol Genet Genomic Med. 2020;8(9):e1310. doi:10.1002/mgg3.1310
12. Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients. Expert Rev Hematol. 2018;11(6):471-479. doi:10.1080/17474086.2018.1476134
13. Spasiano A, Meloni A, Costantini S, et al. Setting for "Normal" Serum Ferritin Levels in Patients with Transfusion-Dependent Thalassemia: Our Current Strategy. J Clin Med. 2021;10(24):5985. Published 2021 Dec 20. doi:10.3390/jcm10245985
14. Koohi F, Kazemi T, Miri-Moghaddam E. Cardiac complications and iron overload in beta thalassemia major patients-a systematic review and meta-analysis. Ann Hematol. 2019;98(6):1323-1331. doi:10.1007/s00277-019-03618-w
15. Origa R, Cinus M, Pilia MP, et al. Safety and Efficacy of the New Combination Iron Chelation Regimens in Patients with Transfusion-Dependent Thalassemia and Severe Iron Overload. J Clin Med. 2022;11(7):2010. Published 2022 Apr 3. doi:10.3390/jcm11072010
16. Motta I, Bou-Fakhredin R, Taher AT, Cappellini MD. Beta Thalassemia: New Therapeutic Options Beyond Transfusion and Iron Chelation. Drugs. 2020;80(11):1053-1063. doi:10.1007/s40265-020-01341-9
17. Mettananda S, Higgs DR. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):177-191. doi:10.1016/j.hoc.2017.11.003
18. Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood. 2011;118(13):3479-3488. doi:10.1182/blood-2010-08-300335
19. Shash H. Non-Transfusion-Dependent Thalassemia: A Panoramic Review. Medicina (Kaunas). 2022;58(10):1496. Published 2022 Oct 21. doi:10.3390/medicina58101496
20. Ekwattanakit S, Siritanaratkul N, Viprakasit V. A prospective analysis for prevalence of complications in Thai nontransfusion-dependent Hb E/β-thalassemia and α-thalassemia (Hb H disease). Am J Hematol. 2018;93(5):623-629. doi:10.1002/ajh.25046
21. Tantiworawit A, Kamolsripat T, Piriyakhuntorn P, et al. Survival and causes of death in patients with alpha and beta-thalassemia in Northern Thailand. Ann Med. 2024;56(1):2338246. doi:10.1080/07853890.2024.2338246
22. Chen H, Choesang T, Li H, et al. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica. 2016;101(3):297-308. doi:10.3324/haematol.2015.127902
23. Gelderman MP, Baek JH, Yalamanoglu A, et al. Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica. 2015;100(5):611-622. doi:10.3324/haematol.2014.117325
24. Estevão IF, Peitl Junior P, Bonini-Domingos CR. Serum ferritin and transferrin saturation levels in β⁰ and β(+) thalassemia patients. Genet Mol Res. 2011;10(2):632-639. Published 2011 Apr 12. doi:10.4238/vol10-2gmr1016
25. Rahmani R, Naseri P, Safaroghli-Azar A, Tarighi S, Hosseini T, Hojjati MT. Investigation of correlation between H63D and C282Y mutations in HFE gene and serum Ferritin level in beta-thalassemia major patients. Transfus Clin Biol. 2019;26(4):249-252. doi:10.1016/j.tracli.2019.05.003
26. Atmakusuma TD, Hasibuan FD, Purnamasari D. The Correlation Between Iron Overload and Endocrine Function in Adult Transfusion-Dependent Beta-Thalassemia Patients with Growth Retardation. J Blood Med. 2021;12:749-753. Published 2021 Aug 17. doi:10.2147/JBM.S325096
27. Salama KM, Ibrahim OM, Kaddah AM, Boseila S, Ismail LA, Hamid MM. Liver Enzymes in Children with beta-Thalassemia Major: Correlation with Iron Overload and Viral Hepatitis. Open Access Maced J Med Sci. 2015;3(2):287-292. doi:10.3889/oamjms.2015.059
28. Elalfy MS, Saber MM, Adly AA, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol. 2016;96(3):318-326. doi:10.1111/ejh.12594
29. Atmakusuma TD, Nasution IR, Sutandyo N. Oxidative Stress (Malondialdehyde) in Adults Beta-Thalassemia Major and Intermedia: Comparison Between Before and After Blood Transfusion and Its Correlation with Iron Overload. Int J Gen Med. 2021;14:6455-6462. Published 2021 Oct 7. doi:10.2147/IJGM.S336805
30. Atmakusuma TD, Lubis AM. Correlation of Serum Ferritin and Liver Iron Concentration with Transient Liver Elastography in Adult Thalassemia Intermedia Patients with Blood Transfusion. J Blood Med. 2021;12:235-243. Published 2021 Apr 15. doi:10.2147/JBM.S303703
31. Elalfy MS, Hamdy M, Adly A, et al. Efficacy and safety of early-start deferiprone in infants and young children with transfusion-dependent beta thalassemia: Evidence for iron shuttling to transferrin in a randomized, double-blind, placebo-controlled, clinical trial (START). Am J Hematol. 2023;98(9):1415-1424. doi:10.1002/ajh.27010
32. Akrawinthawong K, Chaowalit N, Chatuparisuth T, Siritanaratkul N. Effectiveness of deferiprone in transfusion-independent beta-thalassemia/HbE patients. Hematology. 2011;16(2):113-122. doi:10.1179/102453311X12940641877768
33. Limenta LM, Jirasomprasert T, Jittangprasert P, et al. Pharmacokinetics of deferiprone in patients with β-thalassaemia: impact of splenectomy and iron status. Clin Pharmacokinet. 2011;50(1):41-50. doi:10.2165/11536630-000000000-00000
34. Saeidnia M, Fazeli P, Erfani M, Nowrouzi-Sohrabi P, Tamaddon G, Karimi M. The Effect of Curcumin on Iron Overload in Patients with Beta-Thalassemia Intermedia. Clin Lab. 2022;68(3):10.7754/Clin.Lab.2021.210629. doi:10.7754/Clin.Lab.2021.210629
35. Mohammadi E, Tamaddoni A, Qujeq D, et al. An investigation of the effects of curcumin on iron overload, hepcidin level, and liver function in β-thalassemia major patients: A double-blind randomized controlled clinical trial. Phytother Res. 2018;32(9):1828-1835. doi:10.1002/ptr.6118
36. Mirlohi MS, Yaghooti H, Shirali S, Aminasnafi A, Olapour S. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major. Ann Hematol. 2018;97(4):679-684. doi:10.1007/s00277-017-3223-3
37. Al-Hakeim HK, Najm AH, Al-Dujaili AH, Maes M. Major Depression in Children with Transfusion-Dependent Thalassemia Is Strongly Associated with the Combined Effects of Blood Transfusion Rate, Iron Overload, and Increased Pro-inflammatory Cytokines. Neurotox Res. 2020;38(1):228-241. doi:10.1007/s12640-020-00193-1
Copyright (c) 2025 Yidan Liang, Xinhua Zhang, Binbin Huang, Yushan Huang, Liuhua Liao, Yueyan Huang, Ken Huang, Jinquan Lao, Xiaoqin Feng, Bin Lin, Xingjiang Long, Zhixiang Liu, Weijian Zhu, Lian Yu, Deguo Tang, Tianyu Zhong, Yuhua Ye, Xiangmin Xu

This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
