english Multifaceted Roles of Superoxide Dismutases (SODs) in Cellular Homeostasis and Cancer Progression: Redox Regulation and Therapeutic Implications

Superoxide Dismutases in Redox Regulation and Cancer Progression

  • Duygu Aydemir Istanbul University
  • Nuriye Nuray Ulusu koc university
Keywords: Superoxide dismutases, ROS, cellular homeostasis, cancer progression, redox regulation, ferroptosis, antioxidant systems, tumor microenvironment, oxidative stress, SOD1, SOD2, SOD3

Abstract


 

Superoxide dismutases (SODs) are critical metalloenzymes involved in detoxifying reactive oxygen species (ROS), playing a pivotal role in maintaining redox homeostasis and cellular integrity. Comprising three isoforms—SOD1 (cytosolic Cu/Zn-SOD), SOD2 (mitochondrial Mn-SOD), and SOD3 (extracellular Cu/Zn-SOD)—these enzymes catalyze the dismutation of superoxide radicals into hydrogen peroxide and oxygen. Altered SOD expression and function are closely linked to cancer initiation, progression, metastasis, and therapy resistance. SOD1 and SOD2 promote tumor survival by regulating redox-sensitive signaling pathways, including MAPK, PI3K/Akt, and NF-κB. The mTORC1-SOD1 axis emerges as a key mediator of cancer cell adaptation to hypoxia and nutrient deprivation. SOD2 overexpression enhances redox signaling and tumorigenicity, while its inhibition sensitizes tumors to chemotherapeutic agents like 5-fluorouracil. SOD3, traditionally viewed as protective, shows dual roles depending on the cancer context, with implications in angiogenesis, metastasis, and prognosis. Moreover, synthetic MnSOD mimetics—such as Mn porphyrins, salens, and mitochondrial-targeted antioxidants—offer therapeutic potential by modulating oxidative stress in tumor microenvironments, acting as both radiosensitizers and radioprotectors. These findings highlight the multifaceted functions of SOD enzymes in cancer biology and underscore their value as diagnostic biomarkers and therapeutic targets in redox-based cancer treatment strategies.

References

Abdulrahman H, Dyary H, Mohammed R, et al (2024). Preventing free radical damage: The significance of including antioxidants in diet to strengthen immunity. Open Vet J 14:1526. https://doi.org/10.5455/OVJ.2024.v14.i7.2
Abe C, Miyazawa T, Miyazawa T (2022) Current Use of Fenton Reaction in Drugs and Food. Molecules 27:5451. https://doi.org/10.3390/molecules27175451
An SS KYM (1997) Purification and characterization of a manganese-containing superoxide dismutase from a carboxydobacterium, Pseudomonas carboxydohydrogena. Mol Cells 7:730–737
Andrés CMC, Pérez de la Lastra JM, Juan CA, et al (2022) Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2:256–274. https://doi.org/10.3390/stresses2030019
Ansenberger-Fricano K, Ganini D, Mao M, et al (2013) The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 54:116–124. https://doi.org/10.1016/j.freeradbiomed.2012.08.573
Aratani Y (2018) Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52. https://doi.org/10.1016/j.abb.2018.01.004
Arfin S, Jha NK, Jha SK, et al (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxidants 10:642. https://doi.org/10.3390/antiox10050642
Ashtekar A, Huk D, Magner A, et al (2018) Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 103:4135–4145. https://doi.org/10.1210/jc.2018-01039
Aydemir D, Malik AN, Kulac I, et al (2022a) Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 10:. https://doi.org/10.3389/fbioe.2022.810243
Aydemir D, Surucu S, Basak AN, Ulusu NN (2022b) Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 11:3569. https://doi.org/10.3390/cells11223569
Aydemir D, Ulusu NN (2020a) Comment on the: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes (Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5; 220:117104). Spectrochim Acta A Mol Biomol Spectrosc 229:117792. https://doi.org/10.1016/j.saa.2019.117792
Aydemir D, Ulusu NN (2020b) Importance of the serum biochemical parameters as potential biomarkers for rapid diagnosis and evaluating preclinical stage of ALS. Med Hypotheses 141:109736. https://doi.org/10.1016/j.mehy.2020.109736
Aydemir D, Ulusu NN (2020c) The Possible Role of The Glucose-6-Phosphate Dehydrogenase Enzyme Deficiency in The Polyneuropathies. The Journal of Basic and Clinical Health Sciences. https://doi.org/10.30621/jbachs.2020.1151
Aydemir D, Ulusu NN (2020d) Is glucose-6-phosphate dehydrogenase enzyme deficiency a factor in Coronavirus-19 (COVID-19) infections and deaths? Pathog Glob Health 114:109–110. https://doi.org/10.1080/20477724.2020.1751388
Banks CJ, Andersen JL (2019) Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 26:101270. https://doi.org/10.1016/j.redox.2019.101270
Borgstahl G, Oberley-Deegan R (2018) Superoxide Dismutases (SODs) and SOD Mimetics. Antioxidants 7:156. https://doi.org/10.3390/antiox7110156
Bull C FJ (1985) Steady-State Kinetic Studies of Superoxide Dismutases: Properties of the Iron Containing Protein from Escherichia coli. J Am Chem Soc 1985, 107, 3295-3304 107:3295–3304
Cen J, Zhang L, Liu F, et al (2016) Long‐Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF‐7 Cells. Oxid Med Cell Longev 2016:. https://doi.org/10.1155/2016/7053451
Che M, Wang R, Li X, et al (2016) Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 21:143–149. https://doi.org/10.1016/j.drudis.2015.10.001
Checa J, Aran JM (2020)

Reactive Oxygen Species: Drivers of Physiological and Pathological Processes

. J Inflamm Res Volume 13:1057–1073. https://doi.org/10.2147/JIR.S275595
Damiano S, Sozio C, La Rosa G, et al (2020) Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. Int J Mol Sci 21:6606. https://doi.org/10.3390/ijms21186606
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:. https://doi.org/10.3389/fenvs.2014.00053
Deng X, Ewton DZ, Friedman E (2009) Mirk/Dyrk1B Maintains the Viability of Quiescent Pancreatic Cancer Cells by Reducing Levels of Reactive Oxygen Species. Cancer Res 69:3317–3324. https://doi.org/10.1158/0008-5472.CAN-08-2903
Deponte M (2017) The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures? Antioxid Redox Signal 27:1130–1161. https://doi.org/10.1089/ars.2017.7123
Di Marzo N, Chisci E, Giovannoni R (2018) The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 7:156. https://doi.org/10.3390/cells7100156
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, et al (2021) SOD1, more than just an antioxidant. Arch Biochem Biophys 697:108701. https://doi.org/10.1016/j.abb.2020.108701
Fetherolf MM, Boyd SD, Taylor AB, et al (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. Journal of Biological Chemistry 292:12025–12040. https://doi.org/10.1074/jbc.M117.775981
Fu H, Zhang Y, Duan Y, et al (2025) Superoxide dismutase promotes gastric tumorigenesis mediated by Helicobacter pylori and enhances resistance to 5-fluorouracil in gastric cancer. iScience 28:111553. https://doi.org/10.1016/j.isci.2024.111553
Fukai T, Ushio-Fukai M (2011) Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid Redox Signal 15:1583–1606. https://doi.org/10.1089/ars.2011.3999
Gallie DR, Chen Z (2019) Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 14:e0220078. https://doi.org/10.1371/journal.pone.0220078
Ganini D, Petrovich RM, Edwards LL, Mason RP (2015) Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. Biochimica et Biophysica Acta (BBA) - General Subjects 1850:1795–1805. https://doi.org/10.1016/j.bbagen.2015.05.006
Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886. https://doi.org/10.1016/0024-3205(90)90399-C
Griess B, Tom E, Domann F, Teoh-Fitzgerald M (2017a) Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 112:464–479. https://doi.org/10.1016/j.freeradbiomed.2017.08.013
Griess B, Tom E, Domann F, Teoh-Fitzgerald M (2017b) Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 112:464–479. https://doi.org/10.1016/j.freeradbiomed.2017.08.013
Grujicic J, Allen AR (2024) MnSOD Mimetics in Therapy: Exploring Their Role in Combating Oxidative Stress-Related Diseases. Antioxidants 13:1444. https://doi.org/10.3390/antiox13121444
Harris CA DKH-MBKMCKSDELB (1991) Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types. Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1. J Immunol 147:149–54
He Y, Wang F, Yao N, et al (2022) Serum superoxide dismutase level is a potential biomarker of disease prognosis in patients with HEV-induced liver failure. BMC Gastroenterol 22:14. https://doi.org/10.1186/s12876-022-02095-2
Hempel N, Melendez JA (2014) Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Redox Biol 2:245–250. https://doi.org/10.1016/j.redox.2014.01.005
Hileman EA, Achanta G, Huang P (2001) Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opin Ther Targets 5:697–710. https://doi.org/10.1517/14728222.5.6.697
Hofmann B, Hecht H-J, Flohé L (2002) Peroxiredoxins. Biol Chem 383:. https://doi.org/10.1515/BC.2002.040
Hong Y, Boiti A, Vallone D, Foulkes NS (2024) Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 13:312. https://doi.org/10.3390/antiox13030312
Hwang C (1999) Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochimica et Biophysica Acta (BBA) - General Subjects 1427:245–255. https://doi.org/10.1016/S0304-4165(99)00020-3
Islam MN, Rauf A, Fahad FI, et al (2022) Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 62:7282–7300. https://doi.org/10.1080/10408398.2021.1913400
Jin Q, Jhun BS, Lee SH, et al (2004) Differential regulation of phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, and AMP-activated protein kinase pathways during menadione-induced oxidative stress in the kidney of young and old rats. Biochem Biophys Res Commun 315:555–561. https://doi.org/10.1016/j.bbrc.2004.01.093
Jin X, Li X, Li L, et al (2022) Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity. Journal of Biological Chemistry 298:102587. https://doi.org/10.1016/j.jbc.2022.102587
Kang SW. (2015) Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis. . Int J Clin Exp Med 8:14647–55
Karaman K TMUNDNSBGDTBSCSI (2011) Effects of dexamethasone on ischemia reperfusion injury following pringle maneuver. Hepatogastroenterology 58:465–471
Karlsson JOG, Ignarro LJ, Lundström I, et al (2015) Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties. Drug Discov Today 20:411–21. https://doi.org/10.1016/j.drudis.2014.11.008
Kawamata H, Manfredi G (2010) Import, Maturation, and Function of SOD1 and Its Copper Chaperone CCS in the Mitochondrial Intermembrane Space. Antioxid Redox Signal 13:1375–1384. https://doi.org/10.1089/ars.2010.3212
Kim JW SHYJWM (2010) Knock-down of superoxide dismutase 1 sensitizes cisplatin-resistant human ovarian cancer cells. . Anticancer Res 30:2577–81.
Kim S-H, Kim M-O, Gao P, et al (2005) Overexpression of Extracellular Superoxide Dismutase (EC-SOD) in Mouse Skin Plays a Protective Role in DMBA/TPA-Induced Tumor Formation. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 15:333–341. https://doi.org/10.3727/096504005776449725
Kim Y, Gupta Vallur P, Phaëton R, et al (2017) Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants 6:86. https://doi.org/10.3390/antiox6040086
Kong H, Chandel NS (2018) To Claim Growth Turf, mTOR Says SOD Off. Mol Cell 70:383–384. https://doi.org/10.1016/j.molcel.2018.04.015
Kuninaka S, Ichinose Y, Koja K, Toh Y (2000) Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br J Cancer 83:928–934. https://doi.org/10.1054/bjoc.2000.1367
Laukkanen MO (2016) Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor? Oxid Med Cell Longev 2016:. https://doi.org/10.1155/2016/3612589
Lawler JM, Kunst M, Hord JM, et al (2014) EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 306:R470–R482. https://doi.org/10.1152/ajpregu.00371.2013
Lee J, Koo N, Min DB (2004) Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Compr Rev Food Sci Food Saf 3:21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
Lee S, Van Remmen H, Csete M (2009) Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging. Aging Cell 8:296–310. https://doi.org/10.1111/j.1474-9726.2009.00477.x
Li X, Chen Y, Zhao J, et al (2019a) The Specific Inhibition of SOD1 Selectively Promotes Apoptosis of Cancer Cells via Regulation of the ROS Signaling Network. Oxid Med Cell Longev 2019:1–21. https://doi.org/10.1155/2019/9706792
Li Y, Huang T-T, Carlson EJ, et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381. https://doi.org/10.1038/ng1295-376
Li Y, Kong X, Zhang H (2019b) Characteristics of a Novel Manganese Superoxide Dismutase of a Hadal Sea Cucumber (Paelopatides sp.) from the Mariana Trench. Mar Drugs 17:84. https://doi.org/10.3390/md17020084
Liu S, Li B, Xu J, et al (2020) SOD1 Promotes Cell Proliferation and Metastasis in Non-small Cell Lung Cancer via an miR-409-3p/SOD1/SETDB1 Epigenetic Regulatory Feedforward Loop. Front Cell Dev Biol 8:. https://doi.org/10.3389/fcell.2020.00213
Ludwig ML, Metzger AL, Pattridge KA, Stallings WC (1991) Manganese superoxide dismutase from Thermus thermophilus. J Mol Biol 219:335–358. https://doi.org/10.1016/0022-2836(91)90569-R
Maehara K, Oh‐Hashi K, Isobe K (2001) Early growth responsive‐1‐dependent manganese superoxide dismutase gene transcription mediated by platelet‐derived growth factor. The FASEB Journal 15:2025–2026. https://doi.org/10.1096/fj.00-0909fje
Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proceedings of the National Academy of Sciences 79:7634–7638. https://doi.org/10.1073/pnas.79.24.7634
Marklund SL (1984) Extracellular superoxide dismutase in human tissues and human cell lines. Journal of Clinical Investigation 74:1398–1403. https://doi.org/10.1172/JCI111550
Marreiro D, Cruz K, Morais J, et al (2017) Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 6:24. https://doi.org/10.3390/antiox6020024
Martínez-Rey D, Carmona-Rodríguez L, Fernández-Aceñero MJ, et al (2020) Extracellular Superoxide Dismutase, the Endothelial Basement Membrane, and the WNT Pathway: New Players in Vascular Normalization and Tumor Infiltration by T-Cells. Front Immunol 11:. https://doi.org/10.3389/fimmu.2020.579552
McLachlan J, Beattie E, Murphy MP, et al (2014) Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. J Hypertens 32:555–564. https://doi.org/10.1097/HJH.0000000000000054
Miar A, Hevia D, Muñoz-Cimadevilla H, et al (2015) Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer. Free Radic Biol Med 85:45–55. https://doi.org/10.1016/j.freeradbiomed.2015.04.001
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE (2018) NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 127:248–261. https://doi.org/10.1016/j.freeradbiomed.2018.03.051
Mohsin I, Zhang L-Q, Li D-C, Papageorgiou AC (2021) Crystal Structure of a Cu,Zn Superoxide Dismutase From the Thermophilic Fungus Chaetomium thermophilum. Protein Pept Lett 28:1043–1053. https://doi.org/10.2174/0929866528666210316104919
Morvan D, Demidem A (2014) Metabolomics and transcriptomics demonstrate severe oxidative stress in both localized chemotherapy-treated and bystander tumors. Biochimica et Biophysica Acta (BBA) - General Subjects 1840:1092–1104. https://doi.org/10.1016/j.bbagen.2013.11.022
Nakano T, Sato M, Takeuchi M (1995) Unique molecular properties of superoxide dismutase from teleost fish skin. FEBS Lett 360:197–201. https://doi.org/10.1016/0014-5793(95)00084-M
Namgaladze D, Hofer HW, Ullrich V (2002) Redox Control of Calcineurin by Targeting the Binuclear Fe2+-Zn2+ Center at the Enzyme Active Site. Journal of Biological Chemistry 277:5962–5969. https://doi.org/10.1074/jbc.M111268200
Nemmiche S (2016) Oxidative Signaling Response to Cadmium Exposure. Toxicological Sciences kfw222. https://doi.org/10.1093/toxsci/kfw222
Nogueira V, Hay N (2013) Molecular Pathways: Reactive Oxygen Species Homeostasis in Cancer Cells and Implications for Cancer Therapy. Clinical Cancer Research 19:4309–4314. https://doi.org/10.1158/1078-0432.CCR-12-1424
Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling Components of Redox Active Endosomes: The Redoxosomes. Antioxid Redox Signal 11:1313–1333. https://doi.org/10.1089/ars.2008.2363
O’Leary BR, Fath MA, Bellizzi AM, et al (2015) Loss of SOD3 (EcSOD) Expression Promotes an Aggressive Phenotype in Human Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research 21:1741–1751. https://doi.org/10.1158/1078-0432.CCR-14-1959
Olsen DAa, Petersen S V., Oury TD, et al (2004) The Intracellular Proteolytic Processing of Extracellular Superoxide Dismutase (EC-SOD) is a Two-step Event. Journal of Biological Chemistry 279:22152–22157. https://doi.org/10.1074/jbc.M401180200
Ozdemir S TBUNTB (2009) Angiotensin II receptor blockage prevents diabetes-induced oxidative damage in rat heart. Folia Biol (Praha) 2009;55(1):11-6 55:11–16
Palma FR, He C, Danes JM, et al (2020) Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 32:701–714. https://doi.org/10.1089/ars.2019.7962
Parascandolo A, Rappa F, Cappello F, et al (2017) Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration. Sci Rep 7:41416. https://doi.org/10.1038/srep41416
Patel K, Chen Y, Dennehy K, et al (2006) Acute antihypertensive action of nitroxides in the spontaneously hypertensive rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290:R37–R43. https://doi.org/10.1152/ajpregu.00469.2005
Pizzino G, Irrera N, Cucinotta M, et al (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017:1–13. https://doi.org/10.1155/2017/8416763
Prie BE ILTISIGC (2016) Oxidative stress in androgenetic alopecia. . J Med Life 1:79–83
Pringle DR, Yin Z, Lee AA, et al (2012) Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocr Relat Cancer 19:435–446. https://doi.org/10.1530/ERC-11-0306
Qiao K, Fang C, Chen B, et al (2020) Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone Haliotis discus hannai Ino. World J Microbiol Biotechnol 36:115. https://doi.org/10.1007/s11274-020-02892-5
Reddi AR, Culotta VC (2013) SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration. Cell 152:224–235. https://doi.org/10.1016/j.cell.2012.11.046
Reddy VN, Kasahara E, Hiraoka M, et al (2004) Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium. Exp Eye Res 79:859–868. https://doi.org/10.1016/j.exer.2004.04.005
Redhu AK, Bhat JP (2020) Mitochondrial glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase abrogate p53 induced apoptosis in a yeast model: Possible implications for apoptosis resistance in cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects 1864:129504. https://doi.org/10.1016/j.bbagen.2019.129504
Rosa AC, Corsi D, Cavi N, et al (2021) Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 26:1844. https://doi.org/10.3390/molecules26071844
Sanchez-Moreno M, Garcia-Ruiz MA, Sanchez-Navas A, Monteoliva M (1989) Physico-chemical characteristics of superoxide dismutase in Ascaris suum. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 92:737–740. https://doi.org/10.1016/0305-0491(89)90259-9
Schäfer G, Kardinahl S (2003) Iron superoxide dismutases: structure and function of an archaic enzyme. Biochem Soc Trans 31:1330–1334. https://doi.org/10.1042/bst0311330
Ściskalska M, Ołdakowska M, Marek G, Milnerowicz H (2020) Changes in the Activity and Concentration of Superoxide Dismutase Isoenzymes (Cu/Zn SOD, MnSOD) in the Blood of Healthy Subjects and Patients with Acute Pancreatitis. Antioxidants 9:948. https://doi.org/10.3390/antiox9100948
Seo SN LJKYM (2007) Characterization of an iron- and manganese-containing superoxide dismutase from Methylobacillus sp. strain SK1 DSM 8269. . Mol Cells 23:370–378
Sernoskie SC, Jee A, Uetrecht J (2023) The Role of Myeloperoxidase in Clozapine-Induced Inflammation: A Mechanistic Update for Idiosyncratic Drug-Induced Agranulocytosis. Int J Mol Sci 24:1243. https://doi.org/10.3390/ijms24021243
Snezhkina A V., Kudryavtseva A V., Kardymon OL, et al (2019) ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid Med Cell Longev 2019:1–17. https://doi.org/10.1155/2019/6175804
Spasojević I, Chen Y, Noel TJ, et al (2007) Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radic Biol Med 42:1193–1200. https://doi.org/10.1016/j.freeradbiomed.2007.01.019
Stancill JS, Broniowska KA, Oleson BJ, et al (2019) Pancreatic β-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. Journal of Biological Chemistry 294:4843–4853. https://doi.org/10.1074/jbc.RA118.006219
Strålin P, Marklund SL (2000) Multiple cytokines regulate the expression of extracellular superoxide dismutase in human vascular smooth muscle cells. Atherosclerosis 151:433–441. https://doi.org/10.1016/S0021-9150(99)00427-X
Tandogan B, Ulusu NN (2010) COMPARATIVE IN VITRO EFFECTS OF SOME METAL IONS ON BOVINE KIDNEY CORTEX GLUTATHIONE REDUCTASE. Prep Biochem Biotechnol 40:405–411. https://doi.org/10.1080/10826068.2010.525400
Tandoğan B, Ulusu NN (2007) The inhibition kinetics of yeast glutathione reductase by some metal ions. J Enzyme Inhib Med Chem 22:489–495. https://doi.org/10.1080/14756360601162147
Teoh-Fitzgerald MLT, Fitzgerald MP, Jensen TJ, et al (2012) Genetic and Epigenetic Inactivation of Extracellular Superoxide Dismutase Promotes an Invasive Phenotype in Human Lung Cancer by Disrupting ECM Homeostasis. Molecular Cancer Research 10:40–51. https://doi.org/10.1158/1541-7786.MCR-11-0501
Tsang CK, Chen M, Cheng X, et al (2018a) SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Mol Cell 70:502-515.e8. https://doi.org/10.1016/j.molcel.2018.03.029
Tsang CK, Chen M, Cheng X, et al (2018b) SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Mol Cell 70:502-515.e8. https://doi.org/10.1016/j.molcel.2018.03.029
Tuncay E, Seymen AA, Tanriverdi E, et al (2007) Gender related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction. Mol Cell Biochem 304:255–263. https://doi.org/10.1007/s11010-007-9508-4
Turan B, Acan NL, Ulusu NN, Tezcan EF (2001) A Comparative Study on Effect of Dietary Selenium and Vitamin E on Some Antioxidant Enzyme Activities of Liver and Brain Tissues. Biol Trace Elem Res 81:141–152. https://doi.org/10.1385/BTER:81:2:141
Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. https://doi.org/10.1113/jphysiol.2003.049478
Ulusu N. N. TB, ATM, DS (2009) Is it Useful to Determine Glutathione Peroxidase and Thioredoxin Reductase Activities for Comparisons of Malign and Benign Breast Diseases? urkish Journal of Biochemistry , 34:187–194
Ulusu NN (2024) Revealing the secrets of Blue Zones. Front Pharmacol 15:. https://doi.org/10.3389/fphar.2024.1428111
Ulusu NN (2015a) Glucose-6-phosphate dehydrogenase deficiency and Alzheimer’s disease: Partners in crime? The hypothesis. Med Hypotheses 85:219–223. https://doi.org/10.1016/j.mehy.2015.05.006
Ulusu NN (2015b) Curious Cases of the Enzymes / Neobiča Istorija Enzima. J Med Biochem 34:271–281. https://doi.org/10.2478/jomb-2014-0045
Ulusu NN, Acan NL, Turan B, Tezcan EF (2003) Inhibition of Glutathione Reductase by Cadmium Ion in Some Rabbit Tissues and the Protective Role of Dietary Selenium. Biol Trace Elem Res 91:151–156. https://doi.org/10.1385/BTER:91:2:151
Ulusu NN SMAACOOGANBMSMSSGAKC (2003) Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochem Res 28:815–823. https://doi.org/10.1023/A:1023202805255
Ulusu NN, Turan B (2005) Beneficial Effects of Selenium on Some Enzymes of Diabetic Rat Heart. Biol Trace Elem Res 103:207–216. https://doi.org/10.1385/BTER:103:3:207
Vahora H, Khan MA, Alalami U, Hussain A (2016) The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention. J Cancer Prev 21:1–12. https://doi.org/10.15430/JCP.2016.21.1.1
Wang D CMTZDJTKCZYBCYLL (2024) Overexpression of Extracellular Superoxide Dismutase 3 Inhibits Cancer Cell Growth and Migration in Colorectal Cancer. Turk J Gastroenterol 35:465–474
Wang R, Yin C, Li X-X, et al (2016) Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner. Aging 8:1184–1200. https://doi.org/10.18632/aging.100967
Wang Y, Branicky R, Noë A, Hekimi S (2018a) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology 217:1915–1928. https://doi.org/10.1083/jcb.201708007
Wang Y, Branicky R, Noë A, Hekimi S (2018b) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology 217:1915–1928. https://doi.org/10.1083/jcb.201708007
Warner BB, Burhans MS, Clark JC, Wispe JR (1991) Tumor necrosis factor-alpha increases Mn-SOD expression: protection against oxidant injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 260:L296–L301. https://doi.org/10.1152/ajplung.1991.260.4.L296
Wert KJ, Velez G, Cross MR, et al (2018) Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 124:408–419. https://doi.org/10.1016/j.freeradbiomed.2018.06.024
Wu D, Casey PJ (2024) GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 25:7162. https://doi.org/10.3390/ijms25137162
Wu XW, Lee CC, Muzny DM, Caskey CT (1989) Urate oxidase: primary structure and evolutionary implications. Proceedings of the National Academy of Sciences 86:9412–9416. https://doi.org/10.1073/pnas.86.23.9412
Xu Q, Dong S, Gong Q, et al (2024) The Tanshinones (Tan) Extract From Salvia miltiorrhiza Bunge Induces ROS-Dependent Apoptosis in Pancreatic Cancer via AKT Hyperactivation-Mediated FOXO3/SOD2 Signaling. Integr Cancer Ther 23:. https://doi.org/10.1177/15347354241258961
Yoshimitsu K, Kobayashi Y, Usui T (1984) Decreased Superoxide Dismutase Activity of Erythrocytes and Leukocytes in Fanconi’s Anemia. Acta Haematol 72:208–210. https://doi.org/10.1159/000206389
YOUN H-D, KIM E-J, ROE J-H, et al (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochemical Journal 318:889–896. https://doi.org/10.1042/bj3180889
Younus H. (2018) Therapeutic potentials of superoxide dismutase. . Int J Health Sci (Qassim) 12:88–93
Yu B, Cao W, Zhang C, et al (2019) Prediction of lymph node metastasis in oral squamous cell carcinoma based on protein profile. Expert Rev Proteomics 16:363–373. https://doi.org/10.1080/14789450.2019.1584039
Yulyana Y, Tovmasyan A, Ho IA, et al (2016) Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP5+, Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme. Stem Cell Rev Rep 12:140–155. https://doi.org/10.1007/s12015-015-9628-2
Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349. https://doi.org/10.1016/S0891-5849(02)00905-X
Zhang Y, Lu X, Zhang Y, et al (2022) The Effect of Extracellular Superoxide Dismutase (SOD3) Gene in Lung Cancer. Front Oncol 12:. https://doi.org/10.3389/fonc.2022.722646
Zhang Y, Unnikrishnan A, Deepa SS, et al (2017) A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1− mice is correlated to increased cellular senescence. Redox Biol 11:30–37. https://doi.org/10.1016/j.redox.2016.10.014
Zheng M, Liu Y, Zhang G, et al (2023) The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 12:1675. https://doi.org/10.3390/antiox12091675
Published
2025/09/25
Section
Review article