Correlation analysis of serum Glycosylphosphatidylinositol Mannosyltransferase 1 (GMP1) levels in type 2 diabetes mellitus
GMP1 in type 2 diabetes mellitus
Abstract
Objective: To investigate the serum expression of Glycosylphosphatidylinositol Mannosyltransferase 1 (GMP1) in type 2 diabetes mellitus (T2DM) patients and its correlation with hypertriglyceridemia (HTG) to shed light on lipid metabolism disorders in T2DM.
Methods: A total of 239 subjects were included, among whom 92 patients were in the T2DM combined with HTG group and 147 patients were in the T2DM without HTG group. The concentration of the serum GMP1 protein was quantitatively detected via enzyme-linked immunosorbent assay (ELISA). Moreover, the levels of serum triglycerides (TGs) and other related metabolic indicators (such as blood glucose, glycated hemoglobin (HbA1c), total cholesterol, and high/low-density lipoprotein cholesterol) were detected via conventional biochemical methods. To evaluate the potential impact of GMP1 on the occurrence of T2DM combined with HTG.
Results: Both the DM group and the DM+HTG group had significantly higher serum GMP1 levels (P<0.01), and the GMP1 level in the DM+HTG group was considerably higher (P<0.05 or 0.01) than in the simple DM group. The serum GMP1 levels in T2DM and HTG patients were significantly higher. Serum GMP1 level (OR=1.527, 95% CI 1.200--1.943) were all determined by binary logistic regression analysis. 95% CI 1.003–1.010) was a separate risk factor for HTG and T2DM. Correlation analysis revealed that in patients with T2DM (especially those in the DM+HTG group). Multiple regression analysis further indicated that after controlling for factors such as age, sex, disease duration, BMI, and HbA1c, Higher blood GMP1 levels continued to be a predictor or independent factor for patients with T2DM complicated by HTG (P<0.05).
Conclusion: Serum GMP1 levels are markedly elevated in T2DM patients, especially those with hypertriglyceridemia, and they are independently positively linked with triglycerides.
References
2.Liu C, Liang D, Xiao K, Xie L. Association between the triglyceride-glucose index and all-cause and CVD mortality in the young population with diabetes. Cardiovasc Diabetol. 2024 May 16;23(1):171. doi: 10.1186/s12933-024-02269-0. PMID: 38755682; PMCID: PMC11097545.
3.Li X, Sun M, Yang Y, Yao N, Yan S, Wang L, Hu W, Guo R, Wang Y, Li B. Predictive Effect of Triglyceride Glucose-Related Parameters, Obesity Indices, and Lipid Ratios for Diabetes in a Chinese Population: A Prospective Cohort Study. Front Endocrinol (Lausanne). 2022 Mar 30;13:862919. doi: 10.3389/fendo.2022.862919. PMID: 35432185; PMCID: PMC9007200.
4.He HM, Xie YY, Chen Q, Li YK, Li XX, Mu YK, Duo XY, Gao YX, Zheng JG. The additive effect of the triglyceride-glucose index and estimated glucose disposal rate on long-term mortality among individuals with and without diabetes: a population-based study. Cardiovasc Diabetol. 2024 Aug 22;23(1):307. doi: 10.1186/s12933-024-02396-8. PMID: 39175051; PMCID: PMC11342524.
5.Yang T, Liu Y, Li L, Zheng Y, Wang Y, Su J, Yang R, Luo M, Yu C. Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and Type 2 diabetes in patients with coronary heart disease: a RCSCD-TCM study in China. Cardiovasc Diabetol. 2022 Jun 3;21(1):93. doi: 10.1186/s12933-022-01531-7. PMID: 35659300; PMCID: PMC9166647.
6.Ding L, Fu B, Zhang H, Dai C, Zhang A, Yu F, Mi L, Hua W, Tang M. The impact of triglyceride glucose-body mass index on all-cause and cardiovascular mortality in elderly patients with diabetes mellitus: evidence from NHANES 2007-2016. BMC Geriatr. 2024 Apr 22;24(1):356. doi: 10.1186/s12877-024-04992-5. PMID: 38649828; PMCID: PMC11034154.
7.Liu C, Liang D. The association between the triglyceride-glucose index and the risk of cardiovascular disease in US population aged ≤ 65 years with prediabetes or diabetes: a population-based study. Cardiovasc Diabetol. 2024 May 13;23(1):168. doi: 10.1186/s12933-024-02261-8. PMID: 38741118; PMCID: PMC11092030.
8.Tao S, Yu L, Li J, Huang L, Xue T, Yang D, Huang X, Meng C. Multiple triglyceride-derived metabolic indices and incident cardiovascular outcomes in patients with type 2 diabetes and coronary heart disease. Cardiovasc Diabetol. 2024 Oct 14;23(1):359. doi: 10.1186/s12933-024-02446-1. PMID: 39402572; PMCID: PMC11472491.
9.Zeng Y, Yin L, Yin X, Zhao D. Association of triglyceride-glucose index levels with gestational diabetes mellitus in the US pregnant women: a cross-sectional study. Front Endocrinol (Lausanne). 2023 Oct 10;14:1241372. doi: 10.3389/fendo.2023.1241372. PMID: 37881497; PMCID: PMC10597685.
10.Zhou J, Zhu L, Li Y. Association between the triglyceride glucose index and diabetic retinopathy in type 2 diabetes: a meta-analysis. Front Endocrinol (Lausanne). 2023 Dec 7;14:1302127. doi: 10.3389/fendo.2023.1302127. PMID: 38130393; PMCID: PMC10733479.
11.Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021 Apr 20;13(8):10833-10852. doi: 10.18632/aging.202860. Epub 2021 Apr 20. PMID: 33879634; PMCID: PMC8109137.
12.Xiao S, Zhang Q, Yang HY, Tong JY, Yang RQ. The association between triglyceride glucose-body mass index and all-cause and cardiovascular mortality in diabetes patients: a retrospective study from NHANES database. Sci Rep. 2024 Jun 16;14(1):13884. doi: 10.1038/s41598-024-63886-z. PMID: 38880806; PMCID: PMC11180665.
13.Schön M, Zaharia OP, Strassburger K, Kupriyanova Y, Bódis K, Heilmann G, Strom A, Bönhof GJ, Michelotti F, Yurchenko I, Möser C, Huttasch M, Bombrich M, Kelm M, Burkart V, Schrauwen-Hinderling VB, Wagner R, Roden M; GDS Group. Intramyocellular Triglyceride Content During the Early Course of Type 1 and Type 2 Diabetes. Diabetes. 2023 Oct 1;72(10):1483-1492. doi: 10.2337/db23-0353. PMID: 37478166; PMCID: PMC10545555.
14.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
15.Campos Muñiz C, León-García PE, Serrato Diaz A, Hernández-Pérez E. Diabetes mellitus prediction based on the triglyceride and glucose index. Med Clin (Barc). 2023 Mar 24;160(6):231-236. English, Spanish. doi: 10.1016/j.medcli.2022.07.003. Epub 2022 Aug 4. PMID: 35933191.
16.Song T, Su G, Chi Y, Wu T, Xu Y, Chen C. Triglyceride-glucose index predicts the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol Endocrinol. 2022 Jan;38(1):10-15. doi: 10.1080/09513590.2021.1940932. Epub 2021 Jun 29. PMID: 34184968.
17.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
18.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
19.Zhang J, Zhan Q, Deng Z, Lin L, Feng Z, He H, Zhang D, Zhao H, Gu X, Yin X, Yu P, Liu X. Does diabetes modify the triglyceride-glucose index associated with cardiovascular events and mortality? A meta-analysis of 50 cohorts involving 7,239,790 participants. Cardiovasc Diabetol. 2025 Jan 27;24(1):42. doi: 10.1186/s12933-025-02585-z. PMID: 39871273; PMCID: PMC11773825.
20.Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab. 2022 Apr;47(4):343-356. doi: 10.1139/apnm-2021-0631. Epub 2022 Jan 21. PMID: 35061523.
21.Yang S, Shi X, Liu W, Wang Z, Li R, Xu X, Wang C, Li L, Wang R, Xu T. Association between triglyceride glucose-body mass index and heart failure in subjects with diabetes mellitus or prediabetes mellitus: a cross-sectional study. Front Endocrinol (Lausanne). 2023 Nov 3;14:1294909. doi: 10.3389/fendo.2023.1294909. PMID: 38027163; PMCID: PMC10655238.
22.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
23.Guo R, Wei L, Cao Y, Zhao W. Normal triglyceride concentration and the risk of diabetes mellitus type 2 in the general population of China. Front Endocrinol (Lausanne). 2024 Feb 8;15:1330650. doi: 10.3389/fendo.2024.1330650. PMID: 38390200; PMCID: PMC10883381.
24.Han Y, Hu H, Li Q, Deng Z, Liu D. Triglyceride glucose-body mass index and the risk of progression to diabetes from prediabetes: A 5-year cohort study in Chinese adults. Front Public Health. 2023 Feb 3;11:1028461. doi: 10.3389/fpubh.2023.1028461. PMID: 36817911; PMCID: PMC9935616.
25.Ren J, Lv C, Wang J. Association between triglyceride-glucose index and depression in patients with type 2 diabetes: A cross-sectional study from NHANES. Medicine (Baltimore). 2024 Aug 9;103(32):e39258. doi: 10.1097/MD.0000000000039258. PMID: 39121312; PMCID: PMC11315559.
26.Szili-Torok T, Bakker SJL, Tietge UJF. Normal fasting triglyceride levels and incident type 2 diabetes in the general population. Cardiovasc Diabetol. 2022 Jun 18;21(1):111. doi: 10.1186/s12933-022-01530-8. PMID: 35717188; PMCID: PMC9206357.
27.Xie X, Liao J, Huang C, Li X, Cao Q, Kong L, Okamura T, Hashimoto Y, Obora A, Kojima T, Fukui M, Hamaguchi M, Luo Z, Qin Y, Liang X, Xuan X. U-shaped association between triglyceride and risk of incident diabetes in normoglycemic males with NAFLD: A population-base cohort study. Int J Med Sci. 2023 Sep 4;20(11):1417-1424. doi: 10.7150/ijms.83371. PMID: 37790852; PMCID: PMC10542184.
28.Kassab HS, Osman NA, Elrahmany SM. Assessment of Triglyceride-Glucose Index and Ratio in Patients with Type 2 Diabetes and Their Relation to Microvascular Complications. Endocr Res. 2023 Oct 2;48(4):94-100. doi: 10.1080/07435800.2023.2245909. Epub 2023 Aug 11. PMID: 37565769.
29.Puig-Jové C, Julve J, Castelblanco E, Julián MT, Amigó N, Andersen HU, Ahluwalia TS, Rossing P, Mauricio D, Jensen MT, Alonso N. The novel inflammatory biomarker GlycA and triglyceride-rich lipoproteins are associated with the presence of subclinical myocardial dysfunction in subjects with type 1 diabetes mellitus. Cardiovasc Diabetol. 2022 Nov 24;21(1):257. doi: 10.1186/s12933-022-01652-z. PMID: 36434633; PMCID: PMC9700974.
30.Zhang K, Han Y, Gao YX, Gu FM, Cai T, Gu ZX, Yu ZJ, Min G, Gao YF, Hu R, Huang MX. Association between the triglyceride glucose index and length of hospital stay in patients with heart failure and type 2 diabetes in the intensive care unit: a retrospective cohort study. Front Endocrinol (Lausanne). 2024 May 10;15:1354614. doi: 10.3389/fendo.2024.1354614. PMID: 38800470; PMCID: PMC11127565.
31.Liu D, Yang K, Gu H, Li Z, Wang Y, Wang Y. Predictive effect of triglyceride-glucose index on clinical events in patients with acute ischemic stroke and type 2 diabetes mellitus. Cardiovasc Diabetol. 2022 Dec 12;21(1):280. doi: 10.1186/s12933-022-01704-4. PMID: 36510223; PMCID: PMC9743618.
32.Zheng D, Cai J, Xu S, Jiang S, Li C, Wang B. The association of triglyceride-glucose index and combined obesity indicators with chest pain and risk of cardiovascular disease in American population with prediabetes or diabetes. Front Endocrinol (Lausanne). 2024 Sep 6;15:1471535. doi: 10.3389/fendo.2024.1471535. PMID: 39309107; PMCID: PMC11412814.
Copyright (c) 2025 Xiaolin Yang, Qichang Wang, Chen Wei, Jian Zhao

This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
