The influence of serum Sterol Sulfotransferase, ANGPTL8, and SDC1 on liver function in patients with intrahepatic cholestasis during pregnancy
Serum Sterol Sulfotransferase, ANGPTL8, and SDC1 on liver function in intrahepatic cholestasis
Abstract
[Objective] To explore the relationships between serum Sterol Sulfotransferase, Recombinant Angiopoietin Like Protein 8 (ANGPTL8), and Recombinant Syndecan (SDC1) and liver function in patients with intrahepatic cholestasis of pregnancy (ICP), as well as their influence on perinatal outcomes.
[Methods] The control group consisted of 200 healthy pregnant women who had physical tests over the same time period, while the study group consisted of 210 ICP patients who were admitted to our hospital between June 2023 and December 2024. The study group's and the control group's serum Sterol Sulfotransferase, ANGPTL8, SDC1, and liver function markers were compared. Pearson correlation analysis was used to analyze the correlations between the levels of serum Sterol Sulfotransferase, ANGPTL8, and SDC1 and various liver function indicators. The patients in the study group were divided into a poor outcome group (86 patients) and a good outcome group (124 patients) according to perinatal outcomes. Serum Sterol Sulfotransferase, ANGPTL8, and SDC1 levels were examined between the groups with negative and positive outcomes. The factors predicting unfavorable perinatal outcomes in patients with ICPs were examined using univariate and multivariate logistic regression analysis.
[Results] Despite having a lower serum Sterol Sulfotransferase level, the study group had higher levels of ANGPTL8 and SDC1 than the control group. P<0.05 indicated that the differences were statistically significant. The study group's levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were considerably higher than the control group's (P<0.05). The findings of the Pearson correlation analysis showed that while the levels of ANGPTL8 and SDC1 were positively connected with the levels of AST, ALT, and ALP (P<0.05), the level of serum Sterol Sulfotransferase was adversely connected with these levels. Compared to the group that experienced a positive outcome, the unfavorable outcome group's serum Sterol Sulfotransferase level was lower, whereas SDC1 and ANGPTL8 levels were greater than those in the group with favorable results. Decreased serum Sterol Sulfotransferase levels (≤23 μmol/L), increased ANGPTL8 levels (≥650 pg/mL), and poor perinatal outcomes were associated with elevated SDC1 levels (≥53 ng/mL) in patients with ICP (P<0.05).
[Conclusion] Serum Sterol Sulfotransferase, ANGPTL8 and SDC1 are closely related to liver function and perinatal outcomes in patients with ICP. As the level of serum Sterol Sulfotransferase decreases and the levels of ANGPTL8 and SDC1 increase, it can lead to aggravated liver function impairment in patients with ICP, and it leads to adverse perinatal outcomes.
References
2.Liu Y, Wei Y, Chen X, Huang S, Gu Y, Yang Z, Guo X, Zheng H, Feng H, Huang M, Chen S, Xiao T, Hu L, Zhang Q, Zhang Y, Chen GB, Qiu X, Wei F, Zhen J, Liu S. Genetic study of intrahepatic cholestasis of pregnancy in Chinese women unveils East Asian etiology linked to historic HBV epidemic. J Hepatol. 2025 May;82(5):826-835. doi: 10.1016/j.jhep.2024.11.008. Epub 2024 Nov 14. PMID: 39547589.
3.Tai M, Chen L, He Y, Wang F, Tian Z. Ultrasonographic evaluation of the gallbladder motor function in the diagnosis and prognosis of intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth. 2024 Jan 2;24(1):17. doi: 10.1186/s12884-023-06209-w. PMID: 38166795; PMCID: PMC10759328.
4.Huang H, Gao J, Dong R, Wang R, Li L, Wang G, Shi Y, Luo K, Chen J, Yuan W, Tian X, Zhao H, Zhang T. Detection of serum lactate dehydrogenase A and its metabolites on placental function in patients with intrahepatic cholestasis of pregnancy. Int Immunopharmacol. 2025 Jan 3;145:113739. doi: 10.1016/j.intimp.2024.113739. Epub 2024 Dec 10. PMID: 39662271.
5.Zeng W, Hou Y, Gu W, Chen Z. Proteomic Biomarkers of Intrahepatic Cholestasis of Pregnancy. Reprod Sci. 2024 Jun;31(6):1573-1585. doi: 10.1007/s43032-023-01437-z. Epub 2024 Jan 4. PMID: 38177949; PMCID: PMC11111573.
6.Iqbal M, Muhammad Z, Akhter N, Shams Alam S. Effects of Ursodeoxycholic Acid Treatment for Intrahepatic Cholestasis of Pregnancy on Maternal and Fetal Outcomes. Cureus. 2024 Oct 3;16(10):e70800. doi: 10.7759/cureus.70800. PMID: 39493201; PMCID: PMC11531601.
7.Xiong L, Tang M, Xing S, Yang X. The role of noncoding RNA and its diagnostic potential in intrahepatic cholestasis of pregnancy: a research update. Front Genet. 2023 Oct 13;14:1239693. doi: 10.3389/fgene.2023.1239693. PMID: 37900174; PMCID: PMC10611463.
8.Valdovinos-Bello V, García-Romero CS, Cervantes-Peredo A, García-Gómez E, Martínez-Ibarra A, Vázquez-Martínez ER, Valdespino Y, Cerbón M. Body mass index implications in intrahepatic cholestasis of pregnancy and placental histopathological alterations. Ann Hepatol. 2023 Jan-Feb;28(1):100879. doi: 10.1016/j.aohep.2022.100879. Epub 2022 Nov 24. PMID: 36436771.
9.Jasak K, Gajzlerska-Majewska W, Jabiry-Zieniewicz Z, Litwińska-Korcz E, Litwińska M, Ludwin A, Szpotańska-Sikorska M. Intrahepatic Cholestasis of Pregnancy: Diagnosis, Management, and Future Directions-A Review of the Literature. Diagnostics (Basel). 2025 Aug 10;15(16):2002. doi: 10.3390/diagnostics15162002. PMID: 40870854; PMCID: PMC12385523.
10.Arslanoğlu T, Bilirer KK, Demirkıran Cİ, Ceylan Y, Veliyeva S, Koç İN, Polat İ. Intrahepatic cholestasis of pregnancy and coagulation: a dual risk of hypercoagulability and bleeding. BMC Pregnancy Childbirth. 2025 Apr 25;25(1):498. doi: 10.1186/s12884-025-07623-y. PMID: 40281473; PMCID: PMC12023602.
11.Huang X, Gu H, Shen P, Zhang X, Fei A. Systematic review and meta-analysis: Evaluating the influence of intrahepatic cholestasis of pregnancy on obstetric and neonatal outcomes. PLoS One. 2024 Jun 4;19(6):e0304604. doi: 10.1371/journal.pone.0304604. PMID: 38833446; PMCID: PMC11149858.
12.Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021 Apr 20;13(8):10833-10852. doi: 10.18632/aging.202860. Epub 2021 Apr 20. PMID: 33879634; PMCID: PMC8109137.
13.Ozkavak OO, Tanacan A, Haksever M, Sahin R, Serbetci H, Okutucu G, Aldemir E, Sahin D. The utility of albumin-bilirubin score in patients with intrahepatic cholestasis of pregnancy: a retrospective comparative study. Rev Assoc Med Bras (1992). 2024 Oct 25;70(11):e20240860. doi: 10.1590/1806-9282.20240860. PMID: 39475920; PMCID: PMC11509178.
14.Cemortan M, Sagaidac I, Cernetchi O. Comparative analysis of vitamin K levels in women with intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth. 2025 Apr 8;25(1):405. doi: 10.1186/s12884-025-07515-1. PMID: 40200185; PMCID: PMC11980295.
15.Axelsen SM, Schmidt MC, Kampmann U, Grønbæk H, Fuglsang J. The effect of twin pregnancy in intrahepatic cholestasis of pregnancy: A case control study. Acta Obstet Gynecol Scand. 2024 Oct;103(10):1994-2001. doi: 10.1111/aogs.14928. Epub 2024 Jul 26. PMID: 39058263; PMCID: PMC11426215.
16.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
17.Pan D, Jiang M, Tao G, Shi J, Song Z, Chen R, Wang D. The role of Ca2+ signaling and InsP3R in the pathogenesis of intrahepatic cholestasis of pregnancy. J Obstet Gynecol. 2024 Dec;44(1):2345276. doi: 10.1080/01443615.2024.2345276. Epub 2024 Apr 29. PMID: 38685831.
18.Basu S, Običan SG, Bertaggia E, Staab H, Izquierdo MC, Gyamfi-Bannerman C, Haeusler RA. Unresolved alterations in bile acid composition and dyslipidemia in maternal and cord blood after UDCA treatment for intrahepatic cholestasis of pregnancy. Am J Physiol Gastrointest Liver Physiol. 2025 Apr 1;328(4):G364-G376. doi: 10.1152/ajpgi.00266.2024. Epub 2025 Feb 13. PMID: 39947696; PMCID: PMC12053871.
19.Fang Y, Kang Z, Zhang W, Xiang Y, Cheng X, Gui M, Fang D. Core biomarkers analysis benefit for diagnosis on human intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth. 2024 Aug 10;24(1):525. doi: 10.1186/s12884-024-06730-6. PMID: 39127651; PMCID: PMC11317000.
20.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
21.Ozalp CB, Akdogan S, Cetinavci D, Akin MN, Elbe H, Kasap B. Unveiling the placental secrets: Exploring histopathological changes and TROP2 expression in intrahepatic cholestasis of pregnancy. Placenta. 2024 Sep 2;154:201-206. doi: 10.1016/j.placenta.2024.07.055. Epub 2024 Jul 20. PMID: 39047580.
22.Şen Selim H, Şengül M. Could real-time sonoelastography-measured placental strain ratio (PSR) value be a soft marker for the diagnosis of intrahepatic cholestasis of pregnancy?: A case‒control study and short reviews. Medicine (Baltimore). 2023 Jul 7;102(27):e34111. doi: 10.1097/MD.0000000000034111. PMID: 37417592; PMCID: PMC10328599.
23.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
24.Ren Y, Shan X, Ding G, Ai L, Zhu W, Ding Y, Yu F, Chen Y, Wu B. Risk factors and machine learning prediction models for intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth. 2025 Jan 30;25(1):89. doi: 10.1186/s12884-025-07180-4. PMID: 39885442; PMCID: PMC11780866.
25.Tang WZ, Zhao YF, Wang L, Cai QY, Xu WZ, Wen L, Chen XB, Sheng TH, Fan TQ, Liu TH, Li R, Liu SJ. Investigating the risks of late preterm and term neonatal morbidity across clinical subtypes of intrahepatic cholestasis of pregnancy. Front Med (Lausanne). 2025 Mar 14;12:1528705. doi: 10.3389/fmed.2025.1528705. PMID: 40160325; PMCID: PMC11949799.
26.Özkan S, Aksan A, Kurt D, Kurt A, Fıratlıgil FB, Sucu S, Sucu S, Reis YA, Öztürk BG, Çağlar AT. Are Systemic Inflammation Markers Reliable for Diagnosing Intrahepatic Cholestasis of Pregnancy? A Retrospective Cohort Study. Am J Reprod Immunol. 2024 Oct;92(4):e13937. doi: 10.1111/aji.13937. PMID: 39367767.
27.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
28.Zhao Y, Zhang Q, Sheng Y, Zhang M, He G, Liu X. Preterm birth and stillbirth: total bile acid levels in intrahepatic cholestasis of pregnancy and outcomes of twin pregnancies: a retrospective cohort study from 2014 to 2022. BMC Pregnancy Childbirth. 2025 May 19;25(1):588. doi: 10.1186/s12884-025-07644-7. PMID: 40389846; PMCID: PMC12087052.
29.Farisoğullari N, Tanaçan A, Sakcak B, Denizli R, Başaran E, Kara Ö, Yazihan N, Şahin D. Evaluation of maternal serum vascular endothelial growth factor C and D levels in intrahepatic cholestasis of pregnancy. Int J Gynecol Obstet. 2024 Mar;164(3):979-984. doi: 10.1002/ijgo.15107. Epub 2023 Sep 7. PMID: 37680091.
30.Wu L, Li H, Liu Y, Fan Z, Xu J, Li N, Qian X, Lin Z, Li X, Yan J. Research progress of 3D-bioprinted functional pancreas and in vitro tumor models. International Journal of Bioprinting. 2024, 10(1), 1256. doi: 10.36922/ijb.1256.
31.
32.Cemortan M, Iliadi-Tulbure C, Sagaidac I, Cernetchi O. Assessment of aspartate aminotransferase to Platelet Ratio Index and Fibrosis-4 Index score on women with intrahepatic cholestasis of pregnancy. AJOG Glob Rep. 2024 Mar 10;4(2):100337. doi: 10.1016/j.xagr.2024.100337. PMID: 38584799; PMCID: PMC10998213.
33.Misra D, Singh N, Faruqi M, Tiwari V, Kumar V, Zafar F. Evaluating the Utility of Liver Transaminases as Predictors of Feto-Maternal Outcome in Lieu of Serum Bile Acids in Intrahepatic Cholestasis of Pregnancy: A Prospective Observational Study. J Obstet Gynecol India. 2024 Apr;74(2):113-118. doi: 10.1007/s13224-023-01881-6. Epub 2023 Dec 30. PMID: 38707884; PMCID: PMC11065801.
34.Brenøe JE, van Hoorn EGM, Beck L, Bulthuis M, Bezemer RE, Gordijn SJ, Schoots MH, Prins JR. Altered placental macrophage numbers and subsets in pregnancies complicated with intrahepatic cholestasis of pregnancy (ICP) compared to healthy pregnancies. Placenta. 2024 Aug;153:22-30. doi: 10.1016/j.placenta.2024.05.129. Epub 2024 May 17. PMID: 38810541.
35.Verma A, Kumar I, Kumari A, Pandey U, Singh PK. The impact of gallbladder motility in intrahepatic cholestasis of pregnancy: a prospective observational study. Abdom Radiol (NY). 2025 Jun 2. doi: 10.1007/s00261-025-04986-w. Epub ahead of print. PMID: 40455219.
36.Köksal Z, Ağbal T, Güçel F, Sarışen Ş. Relationship Between Serum Autotaxin Levels and Fasting Bile Acid in Intrahepatic Cholestasis of Pregnancy. Am J Reprod Immunol. 2025 Aug;94(2):e70142. doi: 10.1111/aji.70142. PMID: 40824170.
Copyright (c) 2026 Qixin Wang, Ming Wang, Wenqi Wu

This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
