Rizik od razvoja multiple skleroze povezan sa oksidativnim stresom

  • Marija Vasic MMA
  • Aleksandra Topic Universitiy of Belgrade-Faculty of Pharmacy
  • Bojan Markovic Universitiy of Belgrade-Faculty of Pharmacy
  • Neda Milinkovic Universitiy of Belgrade-Faculty of Pharmacy
  • Evica Dincic Military Medical Academy
Ključne reči: multipla skleroza, oksidativni stres, indeks oksidativnog stresa, 8-okso-7,8-dihidro-2´-deoksiguanozin, ukupan antioksidativan status, ukupni oksidativni status.

Sažetak


Uvod: Multiplu sklerozu (MS) karakteriše zapaljenje, demijelinizacija i degeneracija aksona. Oksidativni stres (OS) igra značajnu ulogu u patogenezi bolesti. Cilj studije je bio da se ispita povezanost OS i pušenja na razvoj MS.

Metode: Studija je obuhvatila 175 pacijenata sa relapsno-remitentnom multiplom sklerozom (RRMS) (76 muškaraca, 99 žena) i 254 zdrava ispitanika (81 muškarac i 173 žene). Biomarkeri oksidativnog stresa u serumu, ukupni antioksidativni status (TAS) i ukupni oksidativni status (TOS) određivani su spektrofotometrijski. Indeks oksidativnog stresa (OSI) je izračunat kao odnos TOS i TAS. Urinarni 8-okso-7,8-dihidro-2´-deoksiguanozin je određen HPLC-MS/MS i izražen kao 8 oksodG/kreatinin.

Rezultati: Kod žena sa RRMS bili su viši TOS, OSI i 8-oksodG/kreatinin nego kod žena u kontrolnoj grupi. Grupa muškaraca sa RRMS je imala niži nivo TAS od muškaraca u kontrolnoj grupi. Veći nivo 8-oksodG/kreatinin je dobijen kod aktivnih, pasivnih i bivših pušača sa RRMS nego u kontrolnoj grupi sa istom izloženošću duvanskom dimu. Nezavisni prediktori MS su pasivno pušenje, povećan OSI i povećan nivo 8-oksodG/kreatinin u urinu.

Zaključak: Naši rezultati pokazuju da parametre OS treba uključiti u procenu rizika za razvoj MS. Zbog veće osetljivosti na oksidativni stres, žene mogu biti izložene većem riziku od razvoja MS. Ovi podaci ukazuju na značaj uvođenje antioksidativne terapije kao komplementarnog lečenja pacijenata sa RRMS.

 

Reference

References
1. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020; 26:1816-1821.
2. GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:269-285.
3. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 15; 83:278-286.
4. Tobore TO. Oxidative/Nitroxidative Stress and Multiple Sclerosis. J Mol Neurosci. 2021; 71:506-514.
5. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, et al. Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. 2013; 2013:708659.
6. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015; 30:11–26.
7. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017; 39:73-82.
8. Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012; 5(1):13-22.
9. Shirani A, Tremlett H. The effect of smoking on the symptoms and progression of multiple sclerosis: a review. J Inflamm Res. 2010; 3:115-26.
10. Arneth B, Multiple Sclerosis and Smoking. Am J Med. 2020; 133:783-788
11. Hedström AK, Hillert J, Olsson T, Alfredsson L. Smoking and multiple sclerosis susceptibility. Eur J Epidemiol. 2013; 28:867-874.
12. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38: 1103-1011.
13. Cooke MS, Evans MD. 8-Oxo-deoxyguanosine: reduce, reuse, recycle? Proc Natl Acad Sci USA.2007; 104:13535‒13536.
14. Aydemir Y, Aydemir Ö, Şengül A, Güngen AC, Çoban H, Taşdemir C, et al. Comparison of oxidant/antioxidant balance in COPD and non-COPD smokers. Heart Lung. 2019; 48:566-569.
15. Topic A, Francuski D, Markovic B, Stankovic M, Dobrivojevic S, Drca S, et al. Gender-related reference intervals of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine determined by liquid chromatography-tandem mass spectrometry in Serbian population. Clin Biochem. 2013; 46:321-326.
16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38:1103‒1111.
17. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37:277‒285.
18. Tobore TO. Oxidative/Nitroxidative Stress and Multiple Sclerosis. J Mol Neurosci. 2021; 71:506-514.
19. Padureanu R, Albu CV, Mititelu RR, Bacanoiu MV, Docea AO, Calina D, et al. Oxidative Stress and Inflammation Interdependence in Multiple Sclerosis. J Clin Med. 2019; 8:1815.
20. Haider L. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxid Med Cell Longev. 2015; 2015:725370.
21. Toncev G, Miletic Drakulic S, Knezevic Z, Boskovic Matic T, Gavrilovic A, Toncev S, et al. Prevalence of multiple sclerosis in the Serbian district Sumadija. Neuroepidemiology. 2011; 37:102-106.
22. Kirbas A, Kirbas S, Anlar O, Efe H, Yilmaz A. Serum paraoxonase and arylesterase activity and oxidative status in patients with multiple sclerosis. J Clin Neurosci. 2013; 20:1106-1109.
23. Acar A, Ugur Cevik M, Evliyaoglu O, Uzar E, Tamam Y, Arıkanoglu A, Yucel Y, et al. Evaluation of serum oxidant/antioxidant balance in multiple sclerosis. Acta Neurol Belg. 2012;112:275-280.
24. Souliotis VL, Vlachogiannis NI, Pappa M, Argyriou A, Ntouros PA, Sfikakis PP. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci. 2019; 20;21:55.
25. Korkmaz KS, Butuner BD, Roggenbuck D. Detection of 8-OHdG as a diagnostic biomarker. J Lab Precis Med; 2018:95.
26. Mesaros C, Arora JS, Wholer A, Vachani A, Blair IA. 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med. 2012; 1;53: 610-617.
27. Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients. 2019; 5;11:1528.
28. Alonso A, Hernan MA. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology. 2008; 71:129– 135.
29. Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Mult Scler. 2014; 20:520-526.
30. Antulov R, Weinstock-Guttman B, Cox JL, Hussein S, Durfee J, Caiola C, et al. Gender-related differences in MS: a study of conventional and nonconventional MRI measures. Mult Scler. 2009; 15:345–354.
31. Hedström AK, Olsson T, Alfredsson L. Smoking is a major preventable risk factor for multiple sclerosis. Mult Scler. 2016; 22:1021-1026.
32. Ayaori M, Hisada T, Suzukawa M, Yoshida H, Nishiwaki M, Ito T, et al. Plasma levels and redox status of ascorbic acid and levels of lipid peroxidation products in active and passive smokers. Environ Health Perspect. 2000; 108:105-108.
33. Dietrich M, Block G, Norkus EP, Hudes M, Traber MG, Cross CE, et al. Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase γ-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr. 2003; 77:160–166.
34. Sundström P, Nyström L, Hallmans G. Smoke exposure increases the risk for multiple sclerosis. Eur J Neurol. 2008; 15:579-583.
35. Hewagama A, Patel D, Yarlagadda S, Strickland FM, Richardson BC. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 2009; 10:509-516.
Objavljeno
2022/06/10
Rubrika
Original paper