Klirens lidokaina kao farmakokinetički parameter metaboličke aktivnosti kod pacijenata sa oštećenjem jetre

  • Marija Jovanović Univerzitet u Beogradu - Farmaceutski fakultet
  • Milena Kovačević Univerzitet u Beogradu - Farmaceutski fakultet
  • Sandra Vezmar Kovačević Univerzitet u Beogradu - Farmaceutski fakultet
  • Ivan Palibrk Univerzitetski klinički centar Srbije, Centar za anesteziologiju i reanimatologiju
  • Jasna Bjelanović Univerzitetski klinički centar Srbije, Centar za medicinsku biohemiju
  • Branislava Miljković
  • Katarina Vučićević
Ključne reči: insuficijencija jetre; lidokain; farmakokinetika;

Sažetak


Uvod Cilj studije bila je procena vrednosti farmakokinetičkih parametara lidokaina (LID) kod pacijenata sa oštećenom funkcijom jetre i procena promene farmakokinetičkih parametara u odnosu na vreme nakon hirurške intervencije.

Metodologija Pacijenti sa oštećenom funkcijom jetre bili su podvrgnuti testu pre, 3. i 7. dana nakon intervencije. LID je primenjen u pojedinačnoj i.v. dozi od 1 mg/kg. Uzorci krvi su sakupljeni 15, 30 i 90 minuta nakon primene leka. Za izračunavanje farmakokinetičkih parametara primenjena je neprostorna analiza.

Reultati Studijom je obuhvaćeno 17 pacijenata sa dijagnozom ciroze i 41 pacijent sa tumorom jetre. Kod obe grupe pacijenata, vrednosti koeficijenata korelacije pokazuju najbolju korelaciju između klirensa (CL) i Child-Pugh skora (-0,693, p<0,005) u odnosu na ostale farmakokinetičke parametre. Rezultati ukazuju na pogoršanje funkcije jetre 3. dana nakon operacije u poređenju sa vrednostima LID CL pre operacije (srednje vrednosti LID CL kod pacijenata Child-Pugh grupe A iznosile su 25,91 L/h, 41,59 L/h, respektivno; dok su kod pacijenata u klasi B iznosile 16,89 L/h, 22,65 L/h, respektivno). Sedmog dana vrednosti LID CL (srednja vrednost u Child-Pugh grupi A i B iznosile su 40,98 L/h i 21,46 L/h, respektivno) bile su veće u odnosu na 3. dan posle hirurške intervencije.

Zaključak Farmakokinetički parametri LID se razlikuju u zavisnosti od težine oštećenja jetre, procenjenih Child-Pugh skorom. Vrednosti farmakokinetičkih parametara LID u kombinaciji sa standardnim biohemijskim parametrima mogu se koristiti za dobijanje kompletnije slike funkcije jetre.

Reference

1. Potter JM, Hickman PE, Henderson A, Balderson GA, Lynch SV, Strong RW. The use of the lidocaine-monoethylglycinexylidide test in the liver transplant recipient. Ther Drug Monit 1996; 18: 383-7.
2. Child CG, Turcotte JG. Surgery and portal hypertension. In: The liver and portal hypertension (ed CG Child): 50-64. Saunders 1964.
3. North-Lewis P. Drugs and the Liver. Pharmaceutical Press, 2008.
4. Achilefu S, Dorshow RB. Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers. Topics in Current Chemistry 2002; 222: 31-72.
5. Helmke S, Colmenero J, Everson GT. Noninvasive assessment of liver function. Curr Opin Gastroenterol 2015; 31: 199-208.
6. Hoekstra LT, de Graaf W, Nibourg GA, Heger M, Bennink RJ, Stieger B, et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 2013; 257: 27-36.
7. Tomassini F, Giglio MC, De Simone G, Montalti R, Troisi RI. Hepatic function assessment to predict post-hepatectomy liver failure: what can we trust? A systematic review. Updates Surg 2020; 72: 925-38.
8. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: Effect of liver function. Clin Pharmacol Ther 2004; 78: 80-8.
9. Conti F, Dousset B, Cherruau B, Guerin C, Soubrane O, Houssin D, et al. Use of lidocaine metabolism to test liver function during the long-term follow-up of liver transplant recipients. Clin Transplant 2004; 18: 235-41.
10. Tanaka E, Inomata S, Yasuhara H. The clinical importance of conventional and quantitative liver function tests in liver transplantation. J Clin Pharm Ther 2000; 25: 411-9.
11. Catterall WA, Mackie K. Local Anesthetics. In: Goodman and Gilman's the Pharmacological Basis of Therapeutics (eds B L.L., JS Lazo, KL Parker): 1842. McGraw-Hill, 2006.
12. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit 2001; 23: 81-92.
13. Wojcicki J, Kozlowski K, Drozdzik M, Wojcicki M. Comparison of MEGX (monoethylglycinexylidide) and antipyrine tests in patients with liver cirrhosis. Eur J Drug Metab Pharmacokinet 2002; 27: 243-7.
14. Fabris L, Jemmolo RM, Toffolo G, Paleari D, Viaggi S, Rigon M, et al. The monoethylglycinexylidide test for grading of liver cirrhosis. Aliment Pharmacol Ther 1999; 13: 67-75.
15. Lorf T, Schnitzbauer AA, Schaefers SK, Scherer MN, Schlitt HJ, Oellerich M, et al. Prognostic value of the monoethylglycinexylidide (MEGX)-test prior to liver resection. Hepatogastroenterology 2008; 55: 539-43.
16. Shiffman ML, Luketic VA, Sanyal AJ, Thompson EB. Use of hepatic lidocaine metabolism to monitor patients with chronic liver disease. Ther Drug Monit 1996; 18: 372-7.
17. Ercolani G, Grazi GL, Calliva R, Pierangeli F, Cescon M, Cavallari A, et al. The lidocaine (MEGX) test as an index of hepatic function: its clinical usefulness in liver surgery. Surgery 2000; 127: 464-71.
18. Ben Said D, Ben Ali R, Ferchichi H, Salouage I, Ouanes L, Gaies E, et al. Lidocaine test for easier and less time consuming assessment of liver function in several hepatic injury models. Hepatol Int 2011; 5: 941-8.
19. Garcea G, Ong SL, Maddern GJ. Predicting liver failure following major hepatectomy. Dig Liver Dis 2009; 41: 798-806.
20. Wagener G. Assessment of hepatic function, operative candidacy, and medical management after liver resection in the patient with underlying liver disease. Semin Liver Dis 2013; 33: 204-12.
21. Mũnoz AE, Miguez C, Rubio M, Bartellini M, Levi D, Podesta A, et al. Lidocaine and Monoethylglycinexylidide Serum Determinations to Analyze Liver Function of Cirrhotic Patients After Oral Administration. Digestive Disease and Sciences 1999; 44: 789-95.
22. Wojcicki J, Kozlowski K, Drozdzik M, Wojcicki M. Lidocaine elimination in patients with liver cirrhosis. Acta Pol Pharm 2002; 59: 321-4.
23. Kashuba ADM, Park JJ, Persky AM, Brouwer KLR. Drug Metabolism, Transport, and the Influence of Hepatic Disease. In: Applied Pharmacokinetics and Pharmacodynamics. Principles of Therapeutic Drug Monitoring (eds ME Burton, LM Shaw, JJ Schentag, WE Evans). Lippincott Williams and Wilkins, 2006.
24. Palatini P, De Martin S. Pharmacokinetic drug interactions in liver disease: An update. World J Gastroenterol 2016; 22: 1260-78.
25. Han AN, Han BR, Zhang T, Heimbach T. Author Correction: Hepatic Impairment Physiologically Based Pharmacokinetic Model Development: Current Challenges. Current Pharmacology Reports 2021; 7: 227-30.
26. Sakka SG. Assessing liver function. Curr Opin Crit Care 2007; 13: 207-14.
27. Siu J, McCall J, Connor S. Systematic review of pathophysiological changes following hepatic resection. HPB (Oxford) 2014; 16: 407-21.
28. van den Broek MA, Olde Damink SW, Dejong CH, Lang H, Malago M, Jalan R, et al. Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int 2008; 28: 767-80.
29. Oh SK, Lim BG, Kim YS, Kim SS. Comparison of the Postoperative Liver Function Between Total Intravenous Anesthesia and Inhalation Anesthesia in Patients with Preoperatively Elevated Liver Transaminase Levels: A Retrospective Cohort Study. Ther Clin Risk Manag 2020; 16: 223-32.
30. Jochum C, Beste M, Penndorf V, Farahani MS, Testa G, Nadalin S, et al. Quantitative liver function tests in donors and recipients of living donor liver transplantation. Liver Transpl 2006; 12: 544-9.
Objavljeno
2022/12/01
Rubrika
Original paper