Uticaj TMPRSS6 genotipova na parametre statusa gvožđa kod pacijenata sa stabilnim oblikom HOBP
Sažetak
Uvod: Polimorfizam rs855791 povezan je s povišenim hepcidinom i promenama u vrednostima serumskog gvožđa, saturacije transferina i eritrocitnim indeksima. Cilj istraživanja bio je da se odredi zastupljenost ovog polimorfizma kod pacijenata sa HOBP, kao i da se ispita njegov uticaj na vrednosti parametara statusa gvožđa uključujući hepcidin kod pacijenata sa stabilnim oblikom HOBP.
Metode: Parametri statusa gvožđa i zastupljenost genotipova su ispitani kod 94 pacijenta s HOBP: 29 pacijenata s wild-type tip varijantom (WT grupa) i 65 pacijenata s homozigotonom ili heterozigotnom varijantom (HH grupa). Zastupljenost genotipova određena je i kod 192 ispitanika kontrolne grupe.
Rezultati: Zastupljenosti polimorfizma rs855791 kod pacijenata s HOBP i ispitanika kontrolne grupe je bila uporediva (p=0.791). Parametri statusa gvožđa su bili u okvirima svojih referentnih vrednosti i nije bilo ni statistički ni klinički značajne razlike između WT i HH grupe pacijenata s HOBP. Nakon isključenja pacijenata sa (sub)kliničkim deficitom vitamina B12 i/ili hipoksijom, dobijene su statistički značajno niže vrednosti eritropoetina kod ispitanika WT grupe (p=0.015). Površina ispod krive (AUC) iznosila je 0.688 (95% CI: 0.545-0.830, p=0.015). Određena je optimalna granična vrednost za eritropoetin od 9,74 mIU/mL sa osetljivošću od 61.2% (95% CI: 58.1-64.3) i specifičnošću od 65.0% (95% CI: 61.8-68.3).
Zaključak: Kod pacijenata sa stabilnim oblikom HOBP, parametri statusa gvožđa se ne razlikuju između pacijenata sa wild-type i pacijenata s homozigotnom ili heterozigotnom varaijantom. Nakon isključenja pacijenata sa (sub)kliničkim deficitom vitamina B12 i/ili hipoksijom, dobijena je statistički, ali ne i klinički značajna razlika u vrednosti eritropoetina između WT i HH grupe pacijenata. Ova razlika sugeriše da eritropoetin utiče na vrednosti hepcidina i tako sprečava nastanak deficijencije gvožđa i/ili anemije.
Reference
2. Hoepers AT de C, Menezes MM, Fröde TS. Systematic review of anaemia and inflammatory markers in chronic obstructive pulmonary disease. Clin Exp Pharmacol Physiol. 2015;42(3):231-9
3. Boutou AK, Pitsiou GG, Stanopoulos I, Kontakiotis T, Kyriazis G, Argyropoulou P. Levels of inflammatory mediators in chronic obstructive pulmonary disease patients with anemia of chronic disease: A case-control study. Qjm. 2012;105(7):657-63.
4. Boutou AK, Stanopoulos I, Pitsiou GG, Kontakiotis T, Kyriazis G, Sichletidis L et al. Anemia of chronic disease in chronic obstructive pulmonary disease: A case-control study of cardiopulmonary exercise responses. Respiration. 2011;82(3):237-45.
5. Cloonan SM, Mumby S, Adcock IM, Choi AMK, Chung KF, Quinlan GJ. The iron-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(9):1103-12.
6. DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A et al. Integration of Genomic and Genetic Approaches Implicates IREB2 as a COPD Susceptibility Gene. Am J Hum Genet. 2009;85(4):493-502.
7. Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet. 2011;12:24
8. Hardin M, Zielinski J, Wan ES, Hersh CP, Castaldi PJ, Schwinder E et al. CHRNA3/5, IREB2, and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. Am J Respir Cell Mol Biol. 2012;47(2):203-8.
9. Robalo Nunes, A., Tátá M. The impact of anaemia and iron deficiency in chronic obstructive pulmonary disease: A clinical overview. Revista Portuguesa de Pneumologia (English Edition). 2017;23(3):146-55.
10. Markoulaki D, Kostikas K, Papatheodorou G, Koutsokera A, Alchanatis M, Bakakos P et al. Hemoglobin, erythropoietin and systemic inflammation in exacerbations of chronic obstructive pulmonary disease. Eur J Intern Med. 2011;22(1):103-7.
11. Tandara L, Grubisic TZ, Ivan G, Jurisic Z, Tandara M, Gugo K et al. Systemic inflammation up-regulates serum hepcidin in exacerbations and stabile chronic obstructive pulmonary disease. Clin Biochem. 2015;48(18):1252-7.
12. Portillo K, Martinez-Rivera C, Ruiz-Manzano J. Anaemia in chronic obstructive pulmonary disease. Does it really matter? Int J Clin Pract. 2013;67(6):558-65.
13. Archer NM, Brugnara C. Diagnosis of iron-deficient states. Crit Rev Clin Lab Sci. 2015;52(5):256-72.
14. Silverberg DS, Mor R, Weu MT, Schwartz D, Schwartz IF, Chernin G. Anemia and iron deficiency in COPD patients: Prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm Med. 2014;14(1):38-42.
15. Ganz T, Nemeth E, Rivella S, et al. TMPRSS6 as a Therapeutic Target for Disorders of Erythropoiesis and Iron Homeostasis. Adv Ther. 2023;40(4):1317-33.
16. Nai A, Pagani A, Silvestri L, Campostrini N, Corbella M, Girelli D et al. TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood. 2011;118(16):4459-62.
17. Jallow MW, Cerami C, Clark TG, Prentice AM, Campino S. Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS One. 2020;15(7).
18. Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, Zabaneh D et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet. 2009;41(11):1170-2.
19. Benyamin B, Ferreira MAR, Willemsen G, Gordon S, Middelberg RPS, McEvoy BP et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet. 2009;41(11):1173-5.
20. Pelusi S, Girelli D, Rametta R, Campostrini N, Alfieri C, Traglia M et al. The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis. BMC Nephrol. 2013;14(1).
21. Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A et al. Blood eosinophil thresholds and exacerbations in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(6):2037-47.
22. Milenković B, Janjić SD, Kotur-Stevuljević J, Kopitović I, Janković J, Stjepanović M et al. Validation of Serbian version of chronic obstructive pulmonary disease assessment test. Vojnosanit Pregl. 2020;77(3):294-9.
23. Lee H, Um SJ, Kim YS, Kim DK, Jang AS, Choi HS et al. Association of the neutrophil-to-lymphocyte ratio with lung function and exacerbations in patients with chronic obstructive pulmonary disease. PLoS One. 2016;11(6):1-13.
24. Jo YS, Yoon HIl, Kim DK, Yoo CG, Lee CH. Comparison of COPD assessment test and clinical COPD questionnaire to predict the risk of exacerbation. International Journal of COPD. 2018;13.
25. WHO. Haemoglobin Concertration of The Diagnosis of Anemia and Assessment of Severity. WHO Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity Vitamin and Mineral Nutrition Information System Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/111) (http://www.who.int/vmnis/indicators/haemoglobin pdf. Published online 2019.
26. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease.; 2020. www.goldcopd.org
27. Jones PW, Tabberer M, Chen WH. Creating scenarios of the impact of copd and their relationship to copd assessment test (CATTM) scores. BMC Pulm Med. 2011;11.
28. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline Leidy N. Development and first validation of the COPD Assessment Test. European Respiratory Journal. 2009;34(3):648-54.
29. Kon SSC, Canavan JL, Jones SE, Nolan CM, Clark AL Dickson MJ et al. Minimum clinically important difference for the COPD Assessment Test: A prospective analysis. Lancet Respir Med. 2014;2(3):195-203.
30. Beckman Coulter Inc. Access Vitamin B12 Instructions For Use Cobalamin REF 33000.; 2020.
31. Solmaz S, Özdoğu H, Boğa C. Cobalamin Deficiency Can Mask Depleted Body Iron Reserves. Indian Journal of Hematology and Blood Transfusion. 2015;31(2):255-8.
32. Kroot JJC, Tjalsma H, Fleming RE, Swinkels DW. Hepcidin in human iron disorders: Diagnostic implications. Clin Chem. 2011;57(12):1650-69.
33. Ghio AJ, Roggli VL, Soukup JM, Richards JH, Randell SH, Muhlebach MS. Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. Journal of Cystic Fibrosis. 2013;12(4):390-8.
34. Ghio AJ. Disruption of iron homeostasis and lung disease. Biochim Biophys Acta Gen Subj. 2009;1790(7):731-9.
35. Neves J, Leitz D, Kraut S, Brandenberger C, Agrawal R, Weissmann N et al. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease. EBioMedicine. 2017;20:230-9.
36. Dopsaj V, Topić A, Savković M, Milinković N, Novaković I, Ćujuić D et al. Associations of common variants in HFE and TMPRSS6 genes with hepcidin-25 and iron status parameters in patients with end-stage renal disease. Dis Markers. 2019;2019(Id).
37. Gammella E, Diaz V, Recalcati S, Buratti P, Samaja M, Dey S et al. Erythropoietin’s inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Regul Integr Comp Physiol. 2015;308:330-5.
38. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127(23):2809-13.
39. Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260-72.
Sva prava zadržana (c) 2024 Marko Trtica, Ivana Novaković, Violeta Dopsaj, Branislava Milenković, Jelena Janković, Sanja Dimić Janjić, Vesna Dopuđa Pantić, Jelena Martinović, Snežana Jovičić

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.