1
1
Sažetak
1
Reference
Åström, M., Thet Lwin, Z.M., Teni, F.S., Burström, K. and Berg, J., 2023. Use of the visual analogue scale for health state valuation: a scoping review. Qual. Life. Res., 32(10): 2719-2729. https://doi.org/10.1007/s11136-023-03411-3
Bailey, S., Poundarik, A.A., Sroga, G.E. and Vashishth, D., 2023. Structural role of osteocalcin and its modification in bone fracture. Appl. Phys. Rev., 10(1): 011410. https://doi.org/10.1063/5.0102897
Cedeno-Veloz, B.A., Casadamon-Munarriz, I., Rodríguez-García, A., Lozano-Vicario, L., Zambom-Ferraresi, F., Gonzalo-Lázaro, M., Hidalgo-Ovejero, Á.M., Izquierdo, M. and Martínez-Velilla, N., 2023. Effect of a multicomponent intervention with tele-rehabilitation and the vivifrail© exercise programme on functional capacity after hip fracture: study protocol for the activefls randomized controlled trial. J. Clin. Med., 13(1): 97. https://doi.org/10.3390/jcm13010097
Chang, L.S., Kim, D.K., Park, J.A., Hwang, K.T. and Kim, Y.H., 2023. Reconstruction of a severe open tibiofibular fracture using an ipsilateral vascularized fractured fibula with a thoracodorsal artery perforator free flap. Arch. Plast. Surg., 50(5): 523-528. https://doi.org/10.1055/a-2119-3575
Chen, H.Y., Li, M.C., Liao, D., Li, C., Ji, Q. M., Guo, P., Su, Z., Yang, Y.H., Xiao, W.H. and Zhai, W.H., 2022. The effect of computer-assisted cognitive remediation therapy on cognitive function, social function and quality of life in patients with vascular dementia. J. Multidiscip. Healthc., 15: 2473-2479. https://doi.org/10.2147/JMDH.S378079
Che, Y.J., Qian, Z., Chen, Q., Chang, R., Xie, X. and Hao, Y.F., 2023. Effects of rehabilitation therapy based on exercise prescription on motor function and complications after hip fracture surgery in elderly patients. BMC Musculoskelet. Disord., 24(1): 817. https://doi.org/10.1186/s12891-023-06806-y
Di, D., Zhou, H., Cui, Z., Zhang, J., Liu, Q., Yuan, T., Zhou, T., Luo, X., Ling, D. and Wang, Q., 2024. Frailty phenotype as mediator between systemic inflammation and osteoporosis and fracture risks: A prospective study. J. Cachexia. Sarcopenia. Muscle., 15(3):897-906. https://doi.org/10.1002/jcsm.13447
Feng, L.L., Lu, K., Li, C., Xu, M.Z., Ye, Y.W., Yin, Y. and Shan, H.Q., 2024. Association of apolipoprotein A1 levels with lumbar bone mineral density and β-CTX in osteoporotic fracture individuals: a cross-sectional investigation. Front. Med. (Lausanne), 11: 1415739. https://doi.org/10.3389/fmed.2024.1415739
Fujii, Y., Nakagawa, S., Arai, Y., Inoue, A., Kaihara, K. and Takahashi, K., 2022. Analysis of the relationship between the morphology of the proximal tibiofibular joint and lateral hinge fracture in open wedge high tibial osteotomy. Knee, 39: 10-17. https://doi.org/10.1016/j.knee.2022.08.003
Gwak, H.C., Kim, J.H., Park, D.H., Kim, J.Y., Seo, W.S., Lee, H.Y. and Kim, D.Y., 2024. Patterns of anterior inferior tibiofibular ligament avulsion fracture accompanied by ankle fracture. J. Foot. Ankle. Surg., 63(2): 127-131. https://doi.org/10.1053/j.jfas.2023.06.006
Jia, B., Fei, C., Ren, J., Wang, M., He, J.L., Xu, Z.C., Lu, Y.F., Qi, L., Liao, Y.H. and Qiao, F., 2022. Clinical study of digital six-axis external fixation frame based on CT data for tibiofibular fractures. Zhonghua wai ke za zhi, 60(6): 552-557. https://doi.org/10.3760/cma.j.cn112139-20211206-00580
Johnson, M.J., Kandasamy, S., Raspovic, K.M., Manchanda, K., Liu, G.T., VanPelt, M.D., Lavery, L.A. and Wukich, D.K., 2023. Fractures and dislocations of the foot and ankle in people with diabetes: a literature review. Ther. Adv. Endocrinol. Metab., 14, 20420188231163794. https://doi.org/10.1177/20420188231163794
Kallioniemi, A., 2012. Bone morphogenetic protein 4-a fascinating regulator of cancer cell behavior. Cancer. Genet., 205(6): 267-277. https://doi.org/10.1016/j.cancergen.2012.05.009
Karaismailoglu, B., Şahin, E., Kara, M., and Tütüncü, M.N., (2023). Cortices of fibula and tibia can provide landmarks for accurate syndesmosis fixation angle: computed tomography validation of angle bisector method. J. Foot. Ankle. Surg., 62(5): 788-791. https://doi.org/10.1053/j.jfas.2023.04.001
Lee, J.W., Byun, S.E., Kim, Y.W., Byun, Y.S., Yoon, Y.C. and Sohn, H.S., 2023. Fibular fixation in same-level distal third tibiofibular fractures: is fibular fracture regarded as a secondary importance?. Clin. Orthop. Surg., 15(5): 704-710. https://doi.org/10.4055/cios23036
Li, R., Mukherjee, M.B., Jin, Z., Liu, H., Lin, K., Liu, Q., Dilger, J.P. and Lin, J., 2023. The potential effect of general anesthetics in cancer surgery: meta-analysis of postoperative metastasis and inflammatory cytokines. Cancers (Basel)., 15(10): 2759. https://doi.org/10.3390/cancers15102759
Li, B., Tian, X., Fei, H., Li, G. and Wu, X., 2024. Traumatic proximal tibiofibular fracture and dislocation. BMC Musculoskelet. Disord., 25(1): 466. https://doi.org/10.1186/s12891-024-07577-w
Lin, X.B., Ye, H., He, L.J. and Xu, Z.B., 2023. Analysis of changes in serum high t-PINP/β-CTX ratio and risk of re-fracture after vertebral osteoporotic fracture surgery. Eur. Rev. Med. Pharmacol. Sci., 27(22): 10860-10867. https://doi.org/10.26355/eurrev_202311_34453
Ou, L., Liu, H.R., Shi, X.Y., Peng, C., Zou, Y.J., Jia, J.W., Li, H., Zhu, Z.X., Wang, Y.H., Su, B.M., Lai, Y.Q., Chen, M.Y., Zhu, W.X., Feng, Z., Zhang, G.M. and Yao, M.C., 2024. Terminalia chebula Retz. aqueous extract inhibits the Helicobacter pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. J. Ethnopharmacol., 320: 117428. https://doi.org/10.1016/j.jep.2023.117428
Palm, V.F., Hoogendoorn, J.M. and Verhage, S.M., 2024. The role of fibula fixation in combined distal-third tibia and fibula fractures: a systematic literature review. Arch. Orthop. Trauma. Surg., 144(1): 219-228. https://doi.org/10.1007/s00402-023-05092-6
Stewart, C.C., O'Hara, N.N., Bzovsky, S., Bahney, C.S., Sprague, S., Slobogean, G.P. and Vita-Shock Investigators (2022). Bone turnover markers as surrogates of fracture healing after intramedullary fixation of tibia and femur fractures. Bone. Joint. Res., 11(4): 239-250. https://doi.org/10.1302/2046-3758.114.BJR-2021-0226.R1
Sheng, H., Xu, W., Xu, B., Song, H., Lu, D., Ding, W. and Mildredl, H., 2021. Application of intelligent computer-assisted taylor 3d external fixation in the treatment of tibiofibular fracture: retrospective case study. JMIR Med. Inform., 9(5): e21455. https://doi.org/10.2196/21455
Teixeira, A.O.M., Rodrigues-Junior, V., Rodrigues, B.R., Souza, D.M., Gaia, L.F.P. and Rodrigues, D.B.R., 2023. Comparative analysis of TNF-alpha, TNF-R1, and TNF-R2 in patients with low-impact fractures due to osteoporosis. Rev. Bras. Ortop. (Sao Paulo), 58(3): 495-499. https://doi.org/10.1055/s-0042-1757963
Wei, X., Wang, J., Deng, Y.Y., Shao, B.H., Zhang, Z.F., Wang, H.H. and Wang, C.M., 2023. Tubiechong patching promotes tibia fracture healing in rats by regulating angiogenesis through the VEGF/ERK1/2 signaling pathway. J. Ethnopharmacol., 301: 115851. https://doi.org/10.1016/j.jep.2022.115851
Wu, C., Wang, X., Zhang, H., Xie, S. and He, J., 2023. Biomechanical analysis of different internal fixation methods for special Maisonneuve fracture of the ankle joint based on finite element analysis. Injury, 54(8): 110917. https://doi.org/10.1016/j.injury.2023.110917
Yang, J., Liu, Y., Chen, K. and Liu, M., 2023. The hyaluronic acid gel promotes the formation of osteoblasts mineralized nodules and fracture callus by regulating the expression of Runx2 and osteocalcin. Cell. Mol. Biol (Noisy-le-grand)., 69(15): 136-140. https://doi.org/10.14715/cmb/2023.69.15.24
Yüce, A., Misir, A., Yerli, M., Bayraktar, T.O., Tekin, A.Ç., Dedeoğlu, S.S., İmren, Y. and Gürbüz, H., 2023. Syndesmosis injuries in lateral malleolar fractures accompanied by a posterior malleolar fracture: a nonfixed posterior fracture fragment may not affect postoperative tibiofibular joint malreduction rates. J. Am. Podiatr. Med. Assoc., 113(6): 21-105. https://doi.org/10.7547/21-105
Zhang, E., Miramini, S., Patel, M., Richardson, M., Ebeling, P. and Zhang, L., 2022. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. Comput. Methods. Programs. Biomed., 213: 106536. https://doi.org/10.1016/j.cmpb.2021.106536
Zhang, J., Zhang, L., Li, C., Chai, W., Zhang, L., Chen, H., Zhang, W., Hou, Z., Chen, B., Sun, T., Tang, P. and Zhang, Y., 2023. Clinical guidelines for the diagnosis and treatment of fragility fractures of the pelvis. Orthop. Surg., 15(9): 2195-2212. https://doi.org/10.1111/os.13755
Sva prava zadržana (c) 2025 Lingfeng Li

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
