-
-
Sažetak
-
Reference
[2]H. Zhang, L. Guo, J. Wang, S. Ying and J. Shi, "Multi-View Feature Transformation Based SVM+ for Computer-Aided Diagnosis of Liver Cancers With Ultrasound Images," IEEE J BIOMED HEALTH, vol. 27, no. 3, pp. 1512-1523, March 2023, doi: 10.1109/JBHI.2022.3233717.
[3]J. Moo, P. K. Marsden, K. Vyas and A. J. Reader, "Real-Time Deep-Learned Reconstruction for a Scanning Intraoperative Probe," IEEE T RADIAT PLASMA, vol. 7, no. 2, pp. 143-150, Feb. 2023, doi: 10.1109/TRPMS.2022.3209014.
[4]Y. Yan, F. Fujii, T. Shiinoki and S. Liu, "Markerless Lung Tumor Localization From Intraoperative Stereo Color Fluoroscopic Images for Radiotherapy," IEEE Access, vol. 12, no. 3, pp. 40809-40826, 2024, doi: 10.1109/ACCESS.2024.3376744.
[5]T. Bossis, M. A. Verdier, C. Trigila, L. Pinot, F. Bouvet, A. Blot, H. Ramarijaona, T. Beaumont, and D. Broggio, "A High-Resolution Portable Gamma-Camera for Estimation of Absorbed Dose in Molecular Radiotherapy," in IEEE T RADIAT PLASMA, vol. 8, no. 5, pp. 556-570, May 2024, doi: 10.1109/TRPMS.2024.3376826.
[6]Y. Fang, F. Yang, L. Tan, W. He, P. Wang and X. Ding, "An Electric Field Stereotaxis Method for Surgical Localization and Navigation of Solid Organs," IEEE SENS J, vol. 24, no. 12, pp. 19736-19744, 15 June15, 2024, doi: 10.1109/JSEN.2024.3393857.
[7]R. Zheng, Q. Wang, S. Z. Lv, C. P. Li, C. Y. Wang, W. B. Chen, and H. Wang, "Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM," IEEE T MED IMAGING, vol. 41, no. 10, pp. 2965-2976, Oct. 2022, doi: 10.1109/TMI.2022.3175461.
[8]M. Hasanvand, M. Nooshyar, E. Moharamkhani, and A. Selyari. "Machine Learning Methodology for Identifying Vehicles Using Image Processing," AIA, vol. 1, no. 3, pp. 170-178, April, 2023, DOI: 10.47852/bonviewAIA3202833.
[9]A. Gautheron, M. Sdika, M. Hébert and B. Montcel, "An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy," EEE T BIO-MED ENG, vol. 71, no. 1, pp. 295-306, Jan. 2024, doi: 10.1109/TBME.2023.3299689.
[10]S. K. Singh and A. N. Yadav, "Machine Learning Approach in Optimal Localization of Tumor Using a Novel SIW-Based Antenna for Improvement of Ablation Zone in Hepatocellular Carcinoma," IEEE Access, vol. 11, pp. 26964-26978, 2023, doi: 10.1109/ACCESS.2023.3257869.
[11]A. S. Janani, S. A. Rezaeieh, A. Darvazehban, S. E. Keating and A. M. Abbosh, "Portable Electromagnetic Device for Steatotic Liver Detection Using Blind Source Separation and Shannon Wavelet Entropy," IEEE J ELECTROMAG RF, vol. 6, no. 4, pp. 546-554, Dec. 2022, doi: 10.1109/JERM.2022.3205247.
[12]D. -Y. Tu, P. -C. Lin, H. -H. Chou, M. -R. Shen and S. -Y. Hsieh, "Slice-Fusion: Reducing False Positives in Liver Tumor Detection for Mask R-CNN," IEEE ACM T COMPUT BI, vol. 20, no. 5, pp. 3267-3277, 1 Sept.-Oct. 2023, doi: 10.1109/TCBB.2023.3265394.
[13]F. Zhan, W. Wang, Q. Chen, Y. Guo, L. He and L. Wang, "Three-Direction Fusion for Accurate Volumetric Liver and Tumor Segmentation," IEEE J BIOMED HEALTH, vol. 28, no. 4, pp. 2175-2186, April 2024, doi: 10.1109/JBHI.2023.3344392.
[14]J. Amin, M. Almas Anjum, M. Sharif, S. Kadry and R. González Crespo, "Visual Geometry Group based on U-Shaped Model for Liver/Liver Tumor Segmentation," IEEE LAT AM T, vol. 21, no. 4, pp. 557-564, April 2023, doi: 10.1109/TLA.2023.10128927.
[15]P. Wan, H. Y. Xue, C. R. Liu, F. Chen, W. Shao, J. Qin, W. T. Kong, and D. Q. Zhang, "Transport-Based Anatomical-Functional Metric Learning for Liver Tumor Recognition Using Dual-View Dynamic CEUS Imaging," IEEE T BIO-MED ENG, vol. 70, no. 3, pp. 1012-1023, March 2023, doi: 10.1109/TBME.2022.3207473.
[16]S. Di, Y. -Q. Zhao, M. Liao, F. Zhang and X. Li, "TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images," IEEE J BIOMED HEALTH, vol. 27, no. 3, pp. 1163-1172, March 2023, doi: 10.1109/JBHI.2022.3181974.
[17]Y. Wang, C. Li and Z. Wang, "Advancing Precision Medicine: VAE Enhanced Predictions of Pancreatic Cancer Patient Survival in Local Hospital," IEEE Access, vol. 12, no. 1, pp. 3428-3436, 2024, doi: 10.1109/ACCESS.2023.3348810.
[18]J. V. N. Ramesh, T. Abirami, T. Gopalakrishnan, K. Narayanasamy, and M. K. Ishak, "Sparrow Search Algorithm With Stacked Deep Learning Based Medical Image Analysis for Pancreatic Cancer Detection and Classification," IEEE Access, vol. 11, no.2, pp. 111927-111935, 2023, doi: 10.1109/ACCESS.2023.3322376.
[19]H. Ghorpade, J. Jagtap, S. Patil, K. Kotecha, A. Abraham, N. Horvat, and J. Chakraborty, "Automatic Segmentation of Pancreas and Pancreatic Tumor: A Review of a Decade of Research," IEEE Access, vol. 11, no. 2, pp. 108727-108745, 2023, doi: 10.1109/ACCESS.2023.3320570.
[20]J. Li, H. Zhu, T. Chen and X. Qian, "Generalizable Pancreas Segmentation via a Dual Self-Supervised Learning Framework," IEEE J BIOMED HEALTH, vol. 27, no. 10, pp. 4780-4791, Oct. 2023, doi: 10.1109/JBHI.2023.3294278.
[21]P. Hu, X. Li, N. Lu, K. Q. Dong, X. L. Bai, T. B. Liang, and J. S. Li, "Prediction of New-Onset Diabetes After Pancreatectomy With Subspace Clustering Based Multi-View Feature Selection," IEEE J BIOMED HEALTH, vol. 27, no. 3, pp. 1588-1599, March 2023, doi: 10.1109/JBHI.2022.3233402.
[22]R. Kong, C. X. Dai, Q. Zhang, L. Gao, Z. Q. Chen, Y. T. Song, Z. J. Wu, J. M. Wang, and S. Wang, "Integrated US-OCT-NIRF Tri-Modality Endoscopic Imaging System for Pancreaticobiliary Duct Imaging," IEEE T ULTRASON FERR, vol. 69, no. 6, pp. 1970-1979, June 2022, doi: 10.1109/TUFFC.2022.3164777.
[23]H. M. Kim, S. C. Yang, J. H. Park and S. K. Lee, "Fabrication of Top–Down-Based Optical Fiber Nanoprobes and Their Diagnostic Application for Pancreatic Cancer," IEEE SENS J, vol. 24, no. 8, pp. 11966-11973, 15 April15, 2024, doi: 10.1109/JSEN.2024.3372948.
[24]J. Li, P. P. Zhang, T. Wang, L. Zhu, R. H. Liu, X. Yang, K. X. Wang, D. G. Shen, and B. Sheng, "DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis," IEEE T MED IMAGING, vol. 43, no. 1, pp. 64-75, Jan. 2024, doi: 10.1109/TMI.2023.3289859.
[25]J. Li, T. Chen and X. Qian, "Generalizable Pancreas Segmentation Modeling in CT Imaging via Meta-Learning and Latent-Space Feature Flow Generation," IEEE J BIOMED HEALTH, vol. 27, no. 1, pp. 374-385, Jan. 2023, doi: 10.1109/JBHI.2022.3207597.
[26]M. Connaughton and M. Dabagh, "Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue," IEEE J TRANSL ENG HE, vol. 12, pp. 413-434, 2024, doi: 10.1109/JTEHM.2024.3388561.
[27]A. Midya, J. Chakraborty, R. Srouji, R. R. Narayan, T. Boerner, J. Zheng, L. M. Pak, and M. John, "Computerized Diagnosis of Liver Tumors From CT Scans Using a Deep Neural Network Approach," IEEE J BIOMED HEALTH, vol. 27, no. 5, pp. 2456-2464, May 2023, doi: 10.1109/JBHI.2023.3248489.
[28]T. Zhang, Y. L. Feng, Y. Zhao, G. D. Fan, A. M. Yang, S. Lyu, P. Zhang, F. Song, C. B. Ma, "MSHT: Multi-Stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer," IEEE J BIOMED HEALTH, vol. 27, no. 4, pp. 1946-1957, April 2023, doi: 10.1109/JBHI.2023.3234289.
[29]K. -N. Wang, S. X. Li, Z. Bu, F. X. Zhao, G. Q. Zhou, S. J. Zhou, and Y. Chen, "SBCNet: Scale and Boundary Context Attention Dual-Branch Network for Liver Tumor Segmentation," in IEEE J BIOMED HEALTH, vol. 28, no. 5, pp. 2854-2865, May 2024, doi: 10.1109/JBHI.2024.3370864.
[30]X. Li, R. Guo, J. Lu, T. Chen and X. Qian, "Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography," IEEE T MED IMAGING, vol. 42, no. 6, pp. 1656-1667, June 2023, doi: 10.1109/TMI.2023.3236162.
Sva prava zadržana (c) 2025 Xin Jia, Zongliang Jiang

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
