UTJECAJ TEMPERATURE SUŠENJA SJEMENKI GROŽĐA NA KVALITETU ULJA

  • Maja Ergović Ravančić Polytechic in Požega
Ključne reči: sušenje, grožđe, ulje, sjemenke grožđa

Sažetak


Sjemenke grožđa se sve rjeđe promatraju kao otpad prilikom proizvodnje vina, a sve češće kao vrlo vrijedna sirovina u mnogim područjima i industrijama, a najčešće se upotrebljavaju za proizvodnju jestivih ulja, kao izvor nutritivno vrijednih vlakana, u farmaceutskoj industriji, za proizvodnu biogoriva itd. Njihova visoka primjena rezultat je velikog udjela mononezasićenih i polinezasićenih masnih kiselina, od kojih je najznačajnija  linolna kiselina (C18: 2) s udjelom od 72 do 76 %, ovisno o sorti grožđa. Sjemenke grožđa također sadrže određenu koncentraciju visokovrijednih fenolnih spojeva, uključujući flavonoide, karotenoide, fenolne kiseline, tanine i stilbene. Glavni polifenoli identificirani u ulju sjemenki grožđa su katehin, epikatehin, trans-resveratrol i procijanidin B1. Cilj ovog rada bio je utvrditi utjecaj tri različite temperature sušenja (20, 40 i 60°C) na kvalitetu hladno prešanog ulja sjemenki grožđa dobivenih od pet različitih sorata grožđa (Pinot crni, Pinot bijeli, Muškat žuti, Cabernet sauvignon, Graševina). Ovisno o razlikama kultivara, iz sjemenki grožđa mogu se dobiti različiti prinosi ulja. Kako bi se utvrdio utjecaj temperature sušenja sjemenki grožđa na njegovu kvalitetu, svim uzorcima ulja određene su vrijednosti  kiselinskog broja koji je jasan pokazatelj hidrolize, postotak slobodnih masnih kiselina te peroksidni broj čijom vrijednošću je moguće dobiti uvid u koncentraciju nastalih produkata oksidacije. Vrijednosti peroksidnog broja povećavale su se s porastom temperature sušenja u svim uzorcima. Najviša vrijednost peroksidnog broja zabilježena je kod ulja dobivenog iz sjemenki sorte Graševina neovisno o temperaturi sušenja, dok su kod sorte Muškat žuti zabilježene najniže vrijednosti. Kiselinski broj, kao i udio slobodnih masnih kiselina karakteristični su za svaku sortu i neovisni o temperaturi sušenja.

Reference

AOAC (1990). Official methods of analysis. 15th ed. Association of Official Analytical Chemists; 1990. Washington, USA.

AOAC (2000). Official Methods of Analysis. 17th ed. Association of Official Analytical Chemists. Washington, USA.

Acevedo-Correa, D., Montero Castillo, P., Martelo, R.J. (2018). Effect of the process parameters on the oil extraction yield during supercritical fluid extraction from grape seed. Contemporary Engineering science, 11(13), 611-617.

Akin, G., Elmas, S.N.K., Arslan, F.N., Yılmaz, I., Kenar, A. (2019). Chemometric classification and quantification of cold pressed grape seed oil in blends with refined soybean oils using attenuated total reflectance–mid infrared (ATR–MIR) spectroscopy. LWT, 100, 126-137.

Beres, C., Costa, G.N.S., Cabezudo, I., da Silva-James, N.K., Teles, A.S.C., Cruz, A.P.G., Mellinger-Silva, C., Tonon, R.V., Cabral, L.M.C., Freitas, S.P. (2017). Towards integral utilization of grape pomace from winemaking process: A review. Waste Management, 68, 581-594.

Bjelica, M., Vujasinović, V., Rabrenović, B., Dimić, S. (2019). Some chemical characteristics and oxidative stability of cold pressed grape seed oils obtained from different winery waste. European Journal of Lipid Science and Technology, 121(8), 1-10.

Coelho, J.P., Filipe, R.M., Robalo, M.P., Stateva, R.P. (2018). Recovering value from organic waste materials: Supercritical fluid extraction of oil from industrial grape seeds. The Journal of Supercritical Fluids, 141, 68-77.

de Araujo, M.E.V., Barbosa, E.G., de Oliveira, A.C.L., Milagres, R.S., de Assis de Carvalho Pinto, F., Corrêa, P.C. Physical properties of yellow passion fruit seeds (Passiflora edulis) during the drying process. Scientia Horticulturae, 261, 109032.

Dos Santos Freitas, L., Jacques, R.A., Richter, M.F., Silva, A.L., Caramão, E.B. (2008). Pressurized liquid extraction of vitamin E from Brazilian grape seed oil. Journal of Chromatografy, 1200, 80-83.

Duba, K.S., Fiori, L. (2016). Solubility of grape seed oil in supercritical CO2: Experiments and modeling. The Journal of Chemical Thermodynamics, 100, 44-52.

Fernandes, L., Casal, S., Cruz, S., Alberto Pereira, J., Ramalhosa, E. (2013). Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Research International, 50(1), 161-166.

Garavaglia, J., Markoski, M.M., Oliveira, A., Marcadenti, A. (2016). Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutrition and metabolic insights, 9, 59-64.

Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, LL. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food chemistry, 128, 391-399.

Ma, Z.F, Zhang, H. (2017). Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants, 6(3), 1-11.

Mahanna, M., Millan-Linares, M.C., Grao-Cruces, E., Claro, C., Toscano, R., Rodriguez-Martin, N.M., Naranjo, M.C., Montserrat-de la Paz, S. (2019). Resveratrol enriched grape seed oil (Vitis vinifera L.) protects from white fat dysfunction in obese mice. Journal of Functional Food, 62, 1035-1046.

Narodne novine (2019). Regulations on edible oils and fats. Zagreb: Narodne novine d.d., 11/19

Roberts, J.S., Kidd, D.R., Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89(4), 460-465.

Rubio, M., Alvarez-Ortí, M., Alvarruiz, A., Fernández, E., Pardo, J.E. (2009). Characterization of oil obtained from grape seeds collected during berry development. Journal of agricultural and food chemistry, 57, 2812-2815.

Sabir, A., Unver, A., Kara, Z. (2011). The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). Journal of the Science of Food and Agriculture, 92(9), 1982-1987.

Shinagawa, F.B., de Santana, F.C., Torres, L.R.O., Mancini-Filho, J. (2015). Grape seed oil: a potential functional food? Food Science and Technology, 35(3), 399-406.

Sridhar, K., Charles, A.L. (2019). Mathematical modeling and effect of drying temperature on physicochemical properties of new commercial grape “Kyoho” seeds. Journal of Food Process Engineering, doi.org/10.1111/jfpe.13203.

Trajković, J., Baras, J., Mirić, M., Šiler, S. (1983). Analize životnih namirnica. Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd

Objavljeno
2020/04/14
Rubrika
Članci