BIOTEHNOLOŠKA PROIZVODNJA BILJNIH INOKULANATA NA BAZI AZOTOFIKSATORA

  • Ivana S. Pajčin Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, Katedra za biotehnologiju i farmaceutsko inženjerstvo
  • Vanja Vlajkov Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Srbija
  • Jelena Dodić Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Srbija
  • Aleksandar Jokić Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Srbija
  • Jovana Grahovac Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Srbija
Ključne reči: biološko fiksiranje azota, upstream, kultivacija, downstream, biomasa, formulacija

Sažetak


Azot je jedan od osnovnih elemenata neophodnih za rast i razvoj biljaka u pogledu sinteze DNK i proteina. Glavni rezervoar azota u prirodi predstavlja atmosfera, međutim inertna molekularna forma azota prisutna u vazduhu nije pogodna za usvajanje od strane biljaka. Stoga je neophodna transformacija molekularnog azota u NH4+ ili NO3- jone. Ovaj proces je poznat kao biološko fiksiranje azota koje vrše slobodni ili simbiotski prokarioti – azotofiksatori ili diazotrofi. Potrebe biljaka za velikim količinama azota u zemljištu obično se rešavaju dodavanjem hemijskih đubriva na bazi azota. Međutim, procene su da samo 35% dodatog azota iz azotnih đubriva biva iskorišćeno od strane biljaka, dok preostalih 65% završava u atmosferi u vidu zagađujućih gasova (azotnih oksida), u podzemnim vodama ili u zemljištu dovodeći do degradacije njegovog kvaliteta usled smanjenja vrednosti pH. Stoga se biološko fiksiranje azota javlja kao moguće rešenje za održivo povećanje količine asimilabilnog azota u zemljištu. Glavne grupe prokariotskih azotofiksatora čine bakterije, arhea i cijanobakterije. Biomasa ovih prokariota mora biti proizvedena i formulisana na odgovarajući način primenom različitih biotehnoloških procesa kako bi se primenila u vidu biljnih inokulanata. Cilj ovog rada je sumiranje glavnih aspekata biotehnološke proizvodnje biljnih inokulanata na bazi bakterijskih azotofiksatora u pogledu pripremne faze proizvodnje, kultivacije i izdvajanja i prečišćavanja. Posebno se ističe poređenje sastava kultivacionih medijuma, uslova kultivacije, metoda separacije biomase i formulacije preparata. Ovaj rad daje koristan pregled dostupnih bioprocesnih rešenja za proizvodnju visoko efikasnih biljnih inokulanata, kao jednog od rešenja neophodnih za povećanje održivosti poljoprivredne proizvodnje.

Reference

Abd El-Fattah, D.A., Eweda, W.E., Zayed, M.S., Hassanein, M.K. (2013). Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Annals of Agricultural Science, 58(2), 111-118.
Abd-Alla, M.H., El-Enany, A.-W.E., Nafady, N.A., Khalaf, D.M., Morsy, F.M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 169, 49-58.
Albareda, M., Rodríguez-Navarro, D.N., Camacho, M., Temprano, F.J. (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology & Biochemistry, 40, 2771-2779.
Ardakani, S.S., Hedari, A., Tayebi, L., Mohammadi, M. (2010). Promotion of cotton seedlings growth characteristics by development and use of new bioformulations, International Journal of Botany, 6, 95-100.
Argaw, A., Akuma, A. (2015). Rhizobium leguminosarum bv. viciae sp. inoculation improves the agronomic efficiency of N of common bean (Phaseolus vulgaris L.). Environmental Systems Research, 4, 11.
Atieno, M., Wilson, N., Casteriano, A., Crossett, B., Lesueur, D., and Deaker, R. (2018). Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Applied Microbiology and Biotechnology, 102, 7521-7539.
Baena-Aristizábal, C.M., Foxwell, M., Wright, D., Villamizar-Rivero, L. (2019). Microencapsulation of Rhizobium leguminosarum bv. trifolii with guar gum: Preliminary approach using spray drying. Journal of Biotechnology, 302, 32-41.
Bashan, Y., de-Bashan, L.E. (2015). Inoculant preparation and formulations for Azospirillum spp. In: Cassán, F.D., Okon, Y., Creus, C.M. (Eds.): Handbook for Azospirillum. Springer International Publishing, Switzerland.
Bashan, Y., Trejo, A., de-Bashan, L.E. (2011). Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biology and Fertility of Soils, 47, 963-969.
Bekele, H., Dechassa, N., Argaw, A. (2013). Effects of different carbon and nitrogen sources in broth culture on the growth of Rhizobium leguminosarum bv. phaseoli and symbiotic effectiveness of haricot bean (Phaseoulus vulgaris L.) in Eastern Hararghe soils of Ethiopia. African Journal of Microbiology Research, 7(29), 3754-3761.
Bergersen, F.J. (1961). The growth of Rhizobium in synthetic media. Australian Journal of Biological Sciences, 14, 349–360.
Bhattacharjee, R.B., Singh, A., Mukhopadhyay, S. N. (2008). Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied Microbiology and Biotechnology, 80, 199-209.
Cassán, F., Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology & Biochemistry, 103, 117-130.
Cassána, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28-35.
Chhetri, T.K., Subedee, B.R., Pant, B. (2019). Isolation, identification and production of encapsulated Bradyrhizobium japonicum and study on their viability. Nepal Journal of Biotechnology, 7(1), 39-49.
Cortés-Patiño, S., Bonilla, R.R. (2015). Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33), 2547-2553.
Díaz-Zorita, M., Fernández-Canigia, M.V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45, 3-11.
Din, M., Nelofer, R., Salman, M., Abdullah, Khana, F.H., Khan, A., Ahmad, M., Jalil, F., Din, J.U., Khan, M. (2019). Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports, 22, e00323.
Egamberdieva, D., Jabborova, D., Wirth, S.J., Alam, P., Alyemeni, M.N., Ahmad, P. (2018). Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Frontiers in Microbiology, 9, 1000.
Egamberdieva, D., Reckling, M., Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38-42.
Franche, C., Lindström, K., Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59.
Fukami, J., Cerezini, P., Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73.
García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J.A., Groppa, M.D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21-29.
Gonzalez, E.J., Hernandez, J.-P., de-Bashan, L.E., Bashan, Y. (2018). Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Applied Soil Ecology, 129, 84-93.
Gutiérrez-Rojas, I., Torres-Geraldo, A.B., Moreno-Sarmiento, N. (2011). Optimising carbon and nitrogen sources for Azotobacter chroococcum growth. African Journal of Biotechnology, 10(15), 2951-2958.
Howieson, J.G., Dilworth, M.J. (2016). Working with Rhizobia. ACIAR Monograph No. 173. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia.
Jnawali, A.D., Ojha, R.B., Marahatta, S. (2015). Role of Azotobacter in soil fertility and sustainability - a review. Advances in Plants & Agriculture Research, 2(6), 250-253.
Joe, M.M., Karthikeyan, B., Chauhan, P.S., Shagol, C., Islam, M.R., Deiveekasundaram, M., Sa, T. (2012). Survival of Azospirillum brasilense flocculated cells in alginate and its inoculation effect on growth and yield of maize under water deficit conditions. European Journal of Soil Biology, 50, 198-206.
Jokić, A., Pajčin, I., Grahovac, J., Lukić, N., Ikonić, B., Nikolić, N., Vlajkov, V. (2020), Dynamic modeling using artificial neural network of Bacillus velezensis broth cross-flow microfiltration enhanced by air-sparging and turbulence promoter. Membranes, 10(12), 372.
Jokić, A., Pajčin, I., Lukić, N., Grahovac, J., Dodić, J., Rončević, Z., Šereš, Z. (2019). Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane. Chemical Engineering Research and Design, 150, 359-368.
Khavazi, K., Rejali, F., Seguin, P., Miransari, M. (2007). Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzyme and Microbial Technology, 41, 780-784.
Kizilkaya, R. (2009). Nitrogen fixation capacity of Azotobacter spp. Strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology, 30(1), 73-82.
Kumawat, D.M., Sharma, M.K. (2015). Growth response of three indigenous Bradyrhizobium japonicum isolates against a few environmental factors. International Journal of Research in Pharmacy and Science, 5(2), 7-11.
Larraburu, E.E., Bususcovich, A.C., Llorente, B.E. (2016). Azospirillum brasilense improves in vitro and ex vitro rooting-acclimatization of jojoba. Scientia Horticulturae, 209, 139-147.
Lehmann, J., Joseph, S. (2009). Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (Eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London-Sterling, VA, USA.
Martyniuk, S., Oron, J. (2011). Use of potato extract broth for culturing root-nodule bacteria. Polish Journal of Microbiology, 60(4), 323-327.
Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia – Plant Protection Directorate (2020). List of registered plant nutrition products for organic production (on June 26th, 2020).
Moreno-Galván, A., Rojas-Tapias, D.F., Bonilla, R. (2012). Development and evaluation of an alternative culture medium for mass cultivation of Azospirillum brasilense C16 using sequential statistical designs. Revista Corpoica - Ciencia y Tecnología Agropecuaria, 13(2), 201-206.
Mukhtar, H., Bashir, H., Nawaz, A., Haq, I. (2018). Optimization of growth conditions for Azotobacter species and their use as biofertilizer. Journal of Bacteriology & Mycology, 6(5), 274-278.
Niewiadomska, A., Sawicka, A. (2005). Diazotroph - characteristics of the symbiotic legume - Rhizobium. In: Leguminous Plants in Polish Agriculture: Genetics, Breeding, Cultivating and Using. Materiały Konferencji Naukowej, Poznań, Wydaw, Poland (in Polish).
Ona, O., Impe, J.V., Prinsen, E., Vanderleyden, J. (2005). Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Letters, 246, 125-132.
Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., Grahovac, J. (2020). Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms, 8(10), 1463.
Pastor-Bueis, R., Jiménez-Gómez, A., Barquero, M., Mateos, P.F., González-Andrés, F. (2021). Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonized spaces inside the nodule. European Journal of Agronomy, 122, 126187.
Pastor-Bueis, R., Sánchez-Cañizares, C., James, E.K., González-Andrés, F. (2019). Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Frontiers in Microbiology, 10, 2724.
Phiromtan, M., Mala, T., Srinives, P. (2013). Effect of various carriers and storage temperatures on survival of Azotobacter vinelandii NDD-CK-1 in powder inoculant. Modern Applied Science, 7(6), 81-89.
Quiroga-Cubides, G., Díaz, A., Gómez, M. (2017). Adjustment and scale-up strategy of pilot liquid fermentation process of Azotobacter sp. International Journal of Bioengineering and Life Sciences, 11(4), 322-330.
Rahmani, H.A., Saleh-rastin, N., Khavazi, K., Asgharzadeh, A., Fewer, D., Kiani, S., Lindström, K. (2009). Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World Journal of Microbiology and Biotechnology, 25, 591-600.
Rodríguez-Navarro, D.N., Bellogín, R., Camacho, M., Daza, A., Medina, C., Ollero, F.J., Santamaría, C., Ruíz-Saínz, J.E., Vinardell, J.M., Temprano, F.J. (2003). Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. European Journal of Agronomy, 19, 299-309.
Rojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., Bonilla, R. (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum, 18(2), 129-139.
Rojas-Tapias, D., Sierra, O.O., Botía, D.R., Bonilla, R. (2015). Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Universitas Scientiarum, 20(2), 201-207.
Schmidt, J., Messmer, M., Wilbois, K.P. (2015). Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures. Plant and Soil, 397, 411-445.
Silva, M.T., Gasparotto, F., Lustri, B.M., Vasques, N.C., Yamaguchi, N.U. (2020). Cultivation of Azospirillum brasilense in vinasse and potential use in fertigation. Journal of Agricultural Studies, 8(4), 726-734.
Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9, 1011.
Sumbul, A., Ansari, R.A., Rizvi, R., Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634-3640.
Tewari, S., Pooniya, V., Sharma, S. (2020). Next generation bioformulation prepared by amalgamating Bradyrhizobium, cell free culture supernatant, and exopolysaccharides enhances the indigenous rhizospheric rhizobial population, nodulation, and productivity of pigeon pea. Applied Soil Ecology, 147, 103363.
Trujillo-Roldán, M.A., Valdez-Cruz, N.A., Gonzalez-Monterrubio, C.F., Acevedo-Sánchez, E.V., Martínez-Salinas, C., García-Cabrera, R.I., Gamboa-Suasnavart, R.A., Marín-Palacio, L.D., Villegas, J., Blancas-Cabrera, A. (2013). Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Applied Microbiology and Biotechnology, 97, 9665-9674.
Van Oosten, M.J., Di Stasio, E., Cirillo, V., Silletti, S., Ventorino, V., Pepe, O., Raimondi, G., Maggio, A. (2018). Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biology, 18, 205.
Vogel, G.F., Martinkoski, L., Von Hertwig Bittencourt, H., Grillo, J.F. (2013). Agronomic performance of Azospirillum brasilense on wheat crops. Applied Research & Agrotechnology, 6, 111-119.
Waswa, M.N., Karanja, N.K., Woomer, P.L., Mwenda, G.M. (2014). Identifying elite rhizobia for soybean (Glycine max) in Kenya. African Journal of Crop Science, 2(2), 60-66.
Zeffa, D.M., Fantin, L.H., Koltun, A., de Oliveira, A.L.M., Nunes, M.P.B.A., Canteri, M.G., Goncalves, L.S.A. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ, 8, e7905.
Objavljeno
2021/05/31
Rubrika
Članci