BIOTECHNOLOGICAL PRODUCTION OF PLANT INOCULANTS BASED ON NITROGEN-FIXING BACTERIA

  • Ivana S. Pajčin Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, Katedra za biotehnologiju i farmaceutsko inženjerstvo
  • Vanja Vlajkov University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Jelena Dodić University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Aleksandar Jokić University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Jovana Grahovac University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
Keywords: biological nitrogen fixation, upstream, cultivation, downstream, biomass, formulation

Abstract


Nitrogen is one of the essential elements for plant growth and development in terms of DNA and protein synthesis. Its main reservoir in the nature is the atmosphere; however, inert molecular nitrogen present in the air isn’t suitable nitrogen form for plants’ nutrition. Therefore it has to be chemically transformed to NH4+ or NO3- ion by the process known as biological nitrogen fixation. Nitrogen fixation is carried-out by free-living or symbiotic nitrogen-fixing prokaryotes (diazotrophs), including bacteria, archaea and cyanobacteria. In order to be used as plant inoculants for nitrogen fixation, biomass of these prokaryotes must be produced and formulated appropriately through different biotechnological processes. The aim of this study is to summarize the main aspects of biotechnological production of plant inoculants based on nitrogen-fixing bacteria in terms of upstream processing, cultivation and downstream processing, with a special emphasis to cultivation media composition, cultivation conditions, biomass separation and formulation techniques.

References

Abd El-Fattah, D.A., Eweda, W.E., Zayed, M.S., Hassanein, M.K. (2013). Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Annals of Agricultural Science, 58(2), 111-118.
Abd-Alla, M.H., El-Enany, A.-W.E., Nafady, N.A., Khalaf, D.M., Morsy, F.M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 169, 49-58.
Albareda, M., Rodríguez-Navarro, D.N., Camacho, M., Temprano, F.J. (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology & Biochemistry, 40, 2771-2779.
Ardakani, S.S., Hedari, A., Tayebi, L., Mohammadi, M. (2010). Promotion of cotton seedlings growth characteristics by development and use of new bioformulations, International Journal of Botany, 6, 95-100.
Argaw, A., Akuma, A. (2015). Rhizobium leguminosarum bv. viciae sp. inoculation improves the agronomic efficiency of N of common bean (Phaseolus vulgaris L.). Environmental Systems Research, 4, 11.
Atieno, M., Wilson, N., Casteriano, A., Crossett, B., Lesueur, D., and Deaker, R. (2018). Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Applied Microbiology and Biotechnology, 102, 7521-7539.
Baena-Aristizábal, C.M., Foxwell, M., Wright, D., Villamizar-Rivero, L. (2019). Microencapsulation of Rhizobium leguminosarum bv. trifolii with guar gum: Preliminary approach using spray drying. Journal of Biotechnology, 302, 32-41.
Bashan, Y., de-Bashan, L.E. (2015). Inoculant preparation and formulations for Azospirillum spp. In: Cassán, F.D., Okon, Y., Creus, C.M. (Eds.): Handbook for Azospirillum. Springer International Publishing, Switzerland.
Bashan, Y., Trejo, A., de-Bashan, L.E. (2011). Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biology and Fertility of Soils, 47, 963-969.
Bekele, H., Dechassa, N., Argaw, A. (2013). Effects of different carbon and nitrogen sources in broth culture on the growth of Rhizobium leguminosarum bv. phaseoli and symbiotic effectiveness of haricot bean (Phaseoulus vulgaris L.) in Eastern Hararghe soils of Ethiopia. African Journal of Microbiology Research, 7(29), 3754-3761.
Bergersen, F.J. (1961). The growth of Rhizobium in synthetic media. Australian Journal of Biological Sciences, 14, 349–360.
Bhattacharjee, R.B., Singh, A., Mukhopadhyay, S. N. (2008). Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied Microbiology and Biotechnology, 80, 199-209.
Cassán, F., Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology & Biochemistry, 103, 117-130.
Cassána, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28-35.
Chhetri, T.K., Subedee, B.R., Pant, B. (2019). Isolation, identification and production of encapsulated Bradyrhizobium japonicum and study on their viability. Nepal Journal of Biotechnology, 7(1), 39-49.
Cortés-Patiño, S., Bonilla, R.R. (2015). Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33), 2547-2553.
Díaz-Zorita, M., Fernández-Canigia, M.V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45, 3-11.
Din, M., Nelofer, R., Salman, M., Abdullah, Khana, F.H., Khan, A., Ahmad, M., Jalil, F., Din, J.U., Khan, M. (2019). Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports, 22, e00323.
Egamberdieva, D., Jabborova, D., Wirth, S.J., Alam, P., Alyemeni, M.N., Ahmad, P. (2018). Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Frontiers in Microbiology, 9, 1000.
Egamberdieva, D., Reckling, M., Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38-42.
Franche, C., Lindström, K., Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59.
Fukami, J., Cerezini, P., Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73.
García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J.A., Groppa, M.D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21-29.
Gonzalez, E.J., Hernandez, J.-P., de-Bashan, L.E., Bashan, Y. (2018). Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Applied Soil Ecology, 129, 84-93.
Gutiérrez-Rojas, I., Torres-Geraldo, A.B., Moreno-Sarmiento, N. (2011). Optimising carbon and nitrogen sources for Azotobacter chroococcum growth. African Journal of Biotechnology, 10(15), 2951-2958.
Howieson, J.G., Dilworth, M.J. (2016). Working with Rhizobia. ACIAR Monograph No. 173. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia.
Jnawali, A.D., Ojha, R.B., Marahatta, S. (2015). Role of Azotobacter in soil fertility and sustainability - a review. Advances in Plants & Agriculture Research, 2(6), 250-253.
Joe, M.M., Karthikeyan, B., Chauhan, P.S., Shagol, C., Islam, M.R., Deiveekasundaram, M., Sa, T. (2012). Survival of Azospirillum brasilense flocculated cells in alginate and its inoculation effect on growth and yield of maize under water deficit conditions. European Journal of Soil Biology, 50, 198-206.
Jokić, A., Pajčin, I., Grahovac, J., Lukić, N., Ikonić, B., Nikolić, N., Vlajkov, V. (2020), Dynamic modeling using artificial neural network of Bacillus velezensis broth cross-flow microfiltration enhanced by air-sparging and turbulence promoter. Membranes, 10(12), 372.
Jokić, A., Pajčin, I., Lukić, N., Grahovac, J., Dodić, J., Rončević, Z., Šereš, Z. (2019). Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane. Chemical Engineering Research and Design, 150, 359-368.
Khavazi, K., Rejali, F., Seguin, P., Miransari, M. (2007). Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzyme and Microbial Technology, 41, 780-784.
Kizilkaya, R. (2009). Nitrogen fixation capacity of Azotobacter spp. Strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology, 30(1), 73-82.
Kumawat, D.M., Sharma, M.K. (2015). Growth response of three indigenous Bradyrhizobium japonicum isolates against a few environmental factors. International Journal of Research in Pharmacy and Science, 5(2), 7-11.
Larraburu, E.E., Bususcovich, A.C., Llorente, B.E. (2016). Azospirillum brasilense improves in vitro and ex vitro rooting-acclimatization of jojoba. Scientia Horticulturae, 209, 139-147.
Lehmann, J., Joseph, S. (2009). Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (Eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London-Sterling, VA, USA.
Martyniuk, S., Oron, J. (2011). Use of potato extract broth for culturing root-nodule bacteria. Polish Journal of Microbiology, 60(4), 323-327.
Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia – Plant Protection Directorate (2020). List of registered plant nutrition products for organic production (on June 26th, 2020).
Moreno-Galván, A., Rojas-Tapias, D.F., Bonilla, R. (2012). Development and evaluation of an alternative culture medium for mass cultivation of Azospirillum brasilense C16 using sequential statistical designs. Revista Corpoica - Ciencia y Tecnología Agropecuaria, 13(2), 201-206.
Mukhtar, H., Bashir, H., Nawaz, A., Haq, I. (2018). Optimization of growth conditions for Azotobacter species and their use as biofertilizer. Journal of Bacteriology & Mycology, 6(5), 274-278.
Niewiadomska, A., Sawicka, A. (2005). Diazotroph - characteristics of the symbiotic legume - Rhizobium. In: Leguminous Plants in Polish Agriculture: Genetics, Breeding, Cultivating and Using. Materiały Konferencji Naukowej, Poznań, Wydaw, Poland (in Polish).
Ona, O., Impe, J.V., Prinsen, E., Vanderleyden, J. (2005). Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Letters, 246, 125-132.
Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., Grahovac, J. (2020). Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms, 8(10), 1463.
Pastor-Bueis, R., Jiménez-Gómez, A., Barquero, M., Mateos, P.F., González-Andrés, F. (2021). Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonized spaces inside the nodule. European Journal of Agronomy, 122, 126187.
Pastor-Bueis, R., Sánchez-Cañizares, C., James, E.K., González-Andrés, F. (2019). Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Frontiers in Microbiology, 10, 2724.
Phiromtan, M., Mala, T., Srinives, P. (2013). Effect of various carriers and storage temperatures on survival of Azotobacter vinelandii NDD-CK-1 in powder inoculant. Modern Applied Science, 7(6), 81-89.
Quiroga-Cubides, G., Díaz, A., Gómez, M. (2017). Adjustment and scale-up strategy of pilot liquid fermentation process of Azotobacter sp. International Journal of Bioengineering and Life Sciences, 11(4), 322-330.
Rahmani, H.A., Saleh-rastin, N., Khavazi, K., Asgharzadeh, A., Fewer, D., Kiani, S., Lindström, K. (2009). Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World Journal of Microbiology and Biotechnology, 25, 591-600.
Rodríguez-Navarro, D.N., Bellogín, R., Camacho, M., Daza, A., Medina, C., Ollero, F.J., Santamaría, C., Ruíz-Saínz, J.E., Vinardell, J.M., Temprano, F.J. (2003). Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. European Journal of Agronomy, 19, 299-309.
Rojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., Bonilla, R. (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum, 18(2), 129-139.
Rojas-Tapias, D., Sierra, O.O., Botía, D.R., Bonilla, R. (2015). Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Universitas Scientiarum, 20(2), 201-207.
Schmidt, J., Messmer, M., Wilbois, K.P. (2015). Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures. Plant and Soil, 397, 411-445.
Silva, M.T., Gasparotto, F., Lustri, B.M., Vasques, N.C., Yamaguchi, N.U. (2020). Cultivation of Azospirillum brasilense in vinasse and potential use in fertigation. Journal of Agricultural Studies, 8(4), 726-734.
Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9, 1011.
Sumbul, A., Ansari, R.A., Rizvi, R., Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634-3640.
Tewari, S., Pooniya, V., Sharma, S. (2020). Next generation bioformulation prepared by amalgamating Bradyrhizobium, cell free culture supernatant, and exopolysaccharides enhances the indigenous rhizospheric rhizobial population, nodulation, and productivity of pigeon pea. Applied Soil Ecology, 147, 103363.
Trujillo-Roldán, M.A., Valdez-Cruz, N.A., Gonzalez-Monterrubio, C.F., Acevedo-Sánchez, E.V., Martínez-Salinas, C., García-Cabrera, R.I., Gamboa-Suasnavart, R.A., Marín-Palacio, L.D., Villegas, J., Blancas-Cabrera, A. (2013). Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Applied Microbiology and Biotechnology, 97, 9665-9674.
Van Oosten, M.J., Di Stasio, E., Cirillo, V., Silletti, S., Ventorino, V., Pepe, O., Raimondi, G., Maggio, A. (2018). Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biology, 18, 205.
Vogel, G.F., Martinkoski, L., Von Hertwig Bittencourt, H., Grillo, J.F. (2013). Agronomic performance of Azospirillum brasilense on wheat crops. Applied Research & Agrotechnology, 6, 111-119.
Waswa, M.N., Karanja, N.K., Woomer, P.L., Mwenda, G.M. (2014). Identifying elite rhizobia for soybean (Glycine max) in Kenya. African Journal of Crop Science, 2(2), 60-66.
Zeffa, D.M., Fantin, L.H., Koltun, A., de Oliveira, A.L.M., Nunes, M.P.B.A., Canteri, M.G., Goncalves, L.S.A. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ, 8, e7905.
Published
2021/05/31
Section
Papers