PREDTRETMAN LIGNOCELULOZNE BIOMASE POMOĆU AUTOHTONIH GLJIVA SRBIJE
Sažetak
Predtretman gljivama se poslednjih godina intenzivno istražuje za biološku razgradnjulignoceluloze zbog prisustva enzima sposobnih da raskinu inter- i intrapolimerne veze u ovom supstratu i tako oslobode fermentabilne šećere. U ovom istraživanju su izolovane autohtone lignocelulolitičke gljive Srbije među kojima su odabrani i identifikovani izolati koji bi se mogli primenjivati u predtretmanu otpadne lignocelulozne biomase. Među 12 uspešno izolovanih gljiva, visokom ligninolitičkom aktivnošću su se istakli izolati identifikovani kao Trametes hirsuta F13 i Stereum gausapatum F28, dok je izolat identifikovan kao Myrmaecium fulvopruinatum F14 ispoljio visoku hidrolitičku aktivnost, ali zanemarljivu ligninolitičku aktivnost zbog čega nije razmatran kao potencijalni kandidat za primenu u predtretmanu, ali jeste razmatran kao proizvođač industrijski važnih hidrolitičkih enzima.
U daljem radu ispitan je potencijal razgradnje lignoceluloznog otpada – piljevine bukve – pomoću T. hirsuta F13 i S. gausapatum F28. Oba izolata su efikasno razgradila biomasu, ali je T. hirsuta F13 ispoljio veću selektivnost (koeficijent selektivnosti 1,7) nego izolat S. gausapatum F28 (1,1) – brže razgradio lignin nego celulozu – pa se smatra boljim kandidatom za predtretman. Kako je bitno da predtretman bude ekonomičan, za unapređenje je korišćena melasna džibra, otpad iz industrije alkohola. Dodatak melasne džibre je skratio vreme predtretmana i unapredio selektivnost razgranje lignocelulozne biomase izolatom T. hirsuta F13 – nakon 18 dana koeficijen selektivnosti je bio 1,9 u prisustvu melasne džibre i 1,7 u odsustvu melasne džibre.
Reference
Archibald, F. S. (1992). A new assay for lignin-type peroxidases employing the dye azure B. Applied and Environmental Microbiology, 58(9), 3110–3116.
Arora, D. S., and Gill, P. K. (2005). Production of ligninolytic enzymes by Phlebia floridensis. World Journal of Microbiology and Biotechnology, 21(6), 1021–1028.
Champreda, V., Mhuantong, W., Lekakarn, H., Bunterngsook, B., Kanokratana, P., Zhao, X.-Q., Zhang, F., Inoue, H., Fujii, T., and Eurwilaichitr, L. (2019). Designing cellulolytic enzyme systems for biorefinery: From nature to application. Journal of Bioscience and Bioengineering, 128(6), 637–654.
Choudhary, M., Sharma, P. C., Jat, H. S., Nehra, V., McDonald, A. J., and Garg, N. (2016). Crop residue degradation by fungi isolated from conservation agriculture fields under rice–wheat system of North-West India. International Journal of Recycling of Organic Waste in Agriculture, 5(4), 349–360.
Ehrman, T. (1996). Determination of acid-soluble lignin in biomass, Laboratory Analytical Procedure No. 004. National Renewable Energy Laboratory, Golden, CO.
Gauna, A., Larran, A. S., Perotti, V. E., Feldman, S. R., and Permingeat, H. R. (2018). Fungal pretreatments improve the efficiency of saccharification of Panicum prionitis Ness biomass. Biofuels, 0(0), 1–7.
Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Ludquist, K., and Taherzadeh, M. J. (2011). Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review. BioResources, 6(4), 5224–5259.
Jović, J., Buntić, A., Radovanović, N., Petrović, B., and Mojović, L. (2018). Lignin-degrading abilities of novel autochthonous fungal isolates Trametes hirsuta F13 and Stereum gausapatum F28. Food Technology and Biotechnology, 56(3), 354–365.
Jović, J., Hao, J., Kocić-Tanackov, S., and Mojović, L. (2020). Improvement of lignocellulosic biomass conversion by optimization of fungal ligninolytic enzyme activity and molasses stillage supplementation. Biomass Conversion and Biorefinery.
Kuwahara, M., Glenn, J. K., Morgan, M. A., and Gold, M. H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247–250.
Mielenz, J. R. (2020). Chapter 27—Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. In A. Dahiya (Ed.), Bioenergy (Second Edition) (pp. 545–571). Academic Press.
Miller, G. L. (2002, May 1). Use of dinitrosalicylic acid reagent for determination of reducing sugar (world) [Research-article]. American Chemical Society.
Nair, A. S., and Sivakumar, N. (2020). Chapter 16—Recent advancements in pretreatment technologies of biomass to produce bioenergy. In V. K. Gupta, H. Treichel, R. C. Kuhad, and S. Rodriguez-Cout (Eds.), Recent Developments in Bioenergy Research (pp. 311–324). Elsevier.
Reina, R., Kellner, H., Hess, J., Jehmlich, N., García-Romera, I., Aranda, E., Hofrichter, M., and Liers, C. (2019). Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLOS ONE, 14(3), e0212769.
Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples: Laboratory analytical procedure (LAP): Issue Date, 3/31/2008. National Renewable Energy Laboratory, Golden, Colo.
Templeton, D., and Ehrman, T. (1995). Determination of acid-insoluble lignin in biomass, Laboratory Analytical Procedure No. 003. National Renewable Energy Laboratory, Golden, CO.
Vučurović, V. M., Puškaš, V. S., Miljić, U. D., Đuran, J. J., and Filipović, J. S. (2019). Bioethanol production from sugar beet thick juice by Saccharomyces cerevisiae immobilized in alginate-maize stem ground tissue beads. Journal on Processing and Energy in Agriculture, 23(4), 167–169.
Zhang, J., Zhou, H., Liu, D., and Zhao, X. (2020). Chapter 2—Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. In A. Yousuf, D. Pirozzi, and F. Sannino (Eds.), Lignocellulosic Biomass to Liquid Biofuels (pp. 17–65). Academic Press.