KINETIČKO MODELOVANJE SUPERKRITIČNE EKSTRAKCIJE ULJA SEMENA AMARANTA

  • Jelena Krulj
Ključne reči: ulje semena amaranta, superkritična ekstrakcija, kinetičko modelovanje

Sažetak


Amaranth seeds contain oil with important nutritional properties, in particular because of essential fatty acids presence, high content of minerals, vitamins, lysine and squalene. In this study, the kinetics of the supercritical fluid extraction of oil from three amaranth seed varieties has been investigated. Average oil content in amaranth seed was 58.2 g/kg, ranging from 54.6 to 61.1 g/kg depends on varieties, while squalene content ranged from 3.3 to 3.8 g/kg with an average content of 3.5 g/kg dry seed. Five empirical kinetic equations were successfully applied for kinetic modeling of extraction. As indicated by the appropriate statistical “goodness of fit” tests (such as the sum of squared errors, the coefficient of determination and the average absolute relative deviation), empirical models show good agreement with experimental data. The mathematical modeling of a process is beneficial to predict the process conduct and furthrtmore extend the procedures from laboratory to industrial scales.

Reference

Agu, C. M., Agulanna, A. C. (2020). Kinetics and Thermodynamics of Oil Extracted from Amaranth. Nutritional Value of Amaranth, p.147.
Bojanić, N. Teslić, N., Rakić, D., Brdar, M., Fišteš, A., Zeković, Z., Bodroža-Solarov, M., Pavlić, B. (2019). Extraction kinetics modeling of wheat germ oil supercritical fluid extraction. Journal of Food Processing and Preservation, 43(9), 1–12.
Brunner, G. (2013). Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes (Vol. 4). Springer Science & Business Media.
Cavalcanti, R.N., Albuquerque, C.L.C., Meireles, M.A.A. (2016). Supercritical CO2 extraction of cupuassu butter from defatted seed residue: Experimental data, mathematical modeling and cost of manufacturing. Food and Bioproducts Processing, 97, 48–62.
Cicero, N., Albergamo, A., Salvo, A., Bua, G. D., Bartolomeo, G., Mangano, V., Rotondo, A., Di Stefano, V., Di Bella, G., Dugo, G. (2018). Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Research International, 109, 517-525.
D’Amico, S., Schoenlechner, R. (2017). Amaranth: Its unique nutritional and health-promoting attributes. In book: Gluten-free ancient grains, 131-159.
Ergović-Ravančić, M., Obradović, V., Mesić, J., Svitlica, B., Marčetić, H., Prtenjača, K., Škrabal, S. (2020). The influence of grape seed drying temperature on the quality of grape seed oil. Journal on Processing and Energy in Agriculture, 24(1), 22-25.
Gimplinger, D. M., Dobos, G., Schonlechner, R., Kaul, H. (2007). Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil and Environment, 53(3), 105-112.
He, H. P., Corke, H., Cai. V. (2003). Supercritical Carbon Dioxide Extraction of Oil and Squalene from Amaranthus Grain. Journal of Agricultural Food Chemistry, 51(27), 7921-7925.
Kandiah, M., Spiro, M. (1990). Extraction of ginger rhizome: kinetic studies with supercritical carbon dioxide. International Journal of Food Science Technology, 25, 328-338.
Krulj, J., Brlek, T., Pezo, L., Brkljača, J., Popović, S., Zeković, Z., Bodroža Solarov, M. (2016). Extraction methods of Amaranthus sp. grain oil isolation. Journal of the Science of Food and Agriculture, 96(10), 3552-3558.
Lozano-Grande, M. A., Dávila-Ortiz, G., García-Dávila, J., Ríos-Cortés, G., Espitia-Rangel, E., Martínez-Ayala, A. L. (2019). Optimisation of Microwave-Assisted Extraction of Squalene from Amaranthus spp. Seeds. Journal of Microwave Power and Electromagnetic Energy, 53(4), 243-258.
Morales, D., Miguel, M., Garcés-Rimón, M. (2020). Pseudocereals: a novel source of biologically active peptides. Critical reviews in food science and nutrition, 1-8.
Muzalevskaya, E. N., Miroshnichenko, L. A., Nikolaevskii, V. A., Ushakov, I. B., Chernov, Y. N., Alabovskii, V. V., Batishcheva, G.A., Buzlama, A. V. (2015). Squalene: physiological and pharmacological properties. Eksperimental'naia i klinicheskaia farmakologiia, 78(6), 30-36.
Nasirpour-Tabrizi, P., Azadmard-Damirchi, S., Hesari, J., Piravi-Vanak, Z. (2020). Amaranth seed oil composition. Nutritional Value of Amaranth.
Papamichail, I., Louli, V., Magoulas K. (2000). Supercritical fluid extraction of celery seed oil. Journal of Supercritical Fluids, 18, 213-226.
Reverchon, E., Sesti Osseo, L. (1994). Modeling the supercritical extraction of basil oil. Proceedings of the Third Symposium on Supercritical Fluids, Strasbourg, France, p. 189.
Sánchez, R. J., Fernández, M. B., Nolasco, S. M. (2018). Artificial neural network model for the kinetics of canola oil extraction for different seed samples and pretreatments. Journal of Food Process Engineering, 41(1), e12608.
Sodeifian, G., Sajadian, S.A., Honarvar, B. (2018). Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Natural Product Research, 32, 795–803.
Sovová, H. (2020). Steps of supercritical fluid extraction of natural products and their characteristic times. Journal of Supercritical Fluids, 66, 73-79.
STATISTICA (Data Analysis Software System), v.12.0 (2010). Stat-Soft, Inc, USA (www. statsoft.com)
Tang, Y., Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.
Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588.
Te, K. G. D., Go, A. W., Wang, H. J. D., Guevarra, R. G., Cabatingan, L. K., Tabañag, I. D. F., Angkawijaya, A.E., Ju, Y. H. (2020). Extraction of lipids from post-hydrolysis copra cake with hexane as solvent: Kinetic and equilibrium data. Renewable Energy, 158, 311-323.
Wejnerowska, G., Heinrich, P., Gaca, J. (2013). Separation of squalene and oil from Amaranthus seeds by supercritical carbon dioxide. Separation and Purification Technology, 110, 39-43.
Wrona, O., Rafińska, K., Możeński, C., Buszewski, B. (2017). Supercritical fluid extraction of bioactive compounds from plant materials. Journal of AOAC International, 100(6), 1624-1635.
Yi, M. R., Kang, C. H., Bu, H. J. (2017). Anti-inflammatory and tyrosinase inhibition effects of amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resources, 30(2), 144-151.
Objavljeno
2021/05/31
Rubrika
Članci