EXTRACTION KINETICS MODELING OF AMARANTH SEED OIL SUPERCRITICAL FLUID EXTRACTION

  • Jelena Krulj
Keywords: amaranth seed oil, supercritical fluid extraction, kinetic modeling

Abstract


Ulja biljnog porekla danas privlače pažnju širom sveta zbog nutritivnog kvaliteta i zdravstvenih dobrobiti. Seme amaranta sadrži ulje sa važnim hranljivim svojstvima, posebno zbog prisustva esencijalnih masnih kiselina, visokog sadržaja minerala, vitamina, lizina i skvalena. Skvalen, nezasićeni triterpenski ugljovodonik, često se koristi kao sastojak funkcionalne hrane, dodatak ishrani ili potencijalni lek. U poređenju sa ostalim tehnikama ekstrakcije ulja, ekstrakcija superkritičnim fluidima nudi brojne prednosti, kao što su netoksičnost rastvarača, očuvanje životne sredine i ekstrakcija na relativno niskim temperaturama. U radu je proučena kinetika superkritične ekstrakcije ulja iz tri sorte semena amaranta. Ekstrakcija ulja je izvedena pri procesnim uslovima: pritisak od 300 bara, temperatura 40 °C i protok CO2 0,194 kg/h. U cilju proučavanja dinamike procesa ekstrakcije, vremenske sekvence ekstrakcije su postavljene na 30, 60, 90, 120, 150 i 180 min, s obzirom da je prinos dostigao ravnotežu nakon 3h za svaki od postupaka ekstrakcije. Prosečan sadržaj ulja u semenu amaranta iznosio je 58,2 g/kg, u rasponu od 54,6 do 61,1 g/kg u zavisnosti od sorte, a sadržaj skvalena kretao od 3,3 do 3,8 g/kg sa prosečnim sadržajem 3,5 g/kg. Glavni cilj rada je bio proučavanje kinetičkih aspekata superkritične ekstrakcije ulja modelovanjem krivih ekstrakcije. Za kinetičko modelovanje ekstrakcije uspešno je korišćeno pet empirijskih kinetičkih modela. Prema odgovarajućim statističkim karakteristikama (kao što su zbir kvadrata grešaka, koeficijent determinacije i prosečno apsolutno relativno odstupanje), empirijski modeli su pokazali dobro slaganje sa eksperimentalnim podacima. Matematičko modelovanje ekstrakcije ulja je značajno sa aspekta predviđanja odvijanja procesa, a takođe proširuje mogućnosti izvođenja postupka na industrijskom nivou.

References

Agu, C. M., Agulanna, A. C. (2020). Kinetics and Thermodynamics of Oil Extracted from Amaranth. Nutritional Value of Amaranth, p.147.
Bojanić, N. Teslić, N., Rakić, D., Brdar, M., Fišteš, A., Zeković, Z., Bodroža-Solarov, M., Pavlić, B. (2019). Extraction kinetics modeling of wheat germ oil supercritical fluid extraction. Journal of Food Processing and Preservation, 43(9), 1–12.
Brunner, G. (2013). Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes (Vol. 4). Springer Science & Business Media.
Cavalcanti, R.N., Albuquerque, C.L.C., Meireles, M.A.A. (2016). Supercritical CO2 extraction of cupuassu butter from defatted seed residue: Experimental data, mathematical modeling and cost of manufacturing. Food and Bioproducts Processing, 97, 48–62.
Cicero, N., Albergamo, A., Salvo, A., Bua, G. D., Bartolomeo, G., Mangano, V., Rotondo, A., Di Stefano, V., Di Bella, G., Dugo, G. (2018). Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Research International, 109, 517-525.
D’Amico, S., Schoenlechner, R. (2017). Amaranth: Its unique nutritional and health-promoting attributes. In book: Gluten-free ancient grains, 131-159.
Ergović-Ravančić, M., Obradović, V., Mesić, J., Svitlica, B., Marčetić, H., Prtenjača, K., Škrabal, S. (2020). The influence of grape seed drying temperature on the quality of grape seed oil. Journal on Processing and Energy in Agriculture, 24(1), 22-25.
Gimplinger, D. M., Dobos, G., Schonlechner, R., Kaul, H. (2007). Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil and Environment, 53(3), 105-112.
He, H. P., Corke, H., Cai. V. (2003). Supercritical Carbon Dioxide Extraction of Oil and Squalene from Amaranthus Grain. Journal of Agricultural Food Chemistry, 51(27), 7921-7925.
Kandiah, M., Spiro, M. (1990). Extraction of ginger rhizome: kinetic studies with supercritical carbon dioxide. International Journal of Food Science Technology, 25, 328-338.
Krulj, J., Brlek, T., Pezo, L., Brkljača, J., Popović, S., Zeković, Z., Bodroža Solarov, M. (2016). Extraction methods of Amaranthus sp. grain oil isolation. Journal of the Science of Food and Agriculture, 96(10), 3552-3558.
Lozano-Grande, M. A., Dávila-Ortiz, G., García-Dávila, J., Ríos-Cortés, G., Espitia-Rangel, E., Martínez-Ayala, A. L. (2019). Optimisation of Microwave-Assisted Extraction of Squalene from Amaranthus spp. Seeds. Journal of Microwave Power and Electromagnetic Energy, 53(4), 243-258.
Morales, D., Miguel, M., Garcés-Rimón, M. (2020). Pseudocereals: a novel source of biologically active peptides. Critical reviews in food science and nutrition, 1-8.
Muzalevskaya, E. N., Miroshnichenko, L. A., Nikolaevskii, V. A., Ushakov, I. B., Chernov, Y. N., Alabovskii, V. V., Batishcheva, G.A., Buzlama, A. V. (2015). Squalene: physiological and pharmacological properties. Eksperimental'naia i klinicheskaia farmakologiia, 78(6), 30-36.
Nasirpour-Tabrizi, P., Azadmard-Damirchi, S., Hesari, J., Piravi-Vanak, Z. (2020). Amaranth seed oil composition. Nutritional Value of Amaranth.
Papamichail, I., Louli, V., Magoulas K. (2000). Supercritical fluid extraction of celery seed oil. Journal of Supercritical Fluids, 18, 213-226.
Reverchon, E., Sesti Osseo, L. (1994). Modeling the supercritical extraction of basil oil. Proceedings of the Third Symposium on Supercritical Fluids, Strasbourg, France, p. 189.
Sánchez, R. J., Fernández, M. B., Nolasco, S. M. (2018). Artificial neural network model for the kinetics of canola oil extraction for different seed samples and pretreatments. Journal of Food Process Engineering, 41(1), e12608.
Sodeifian, G., Sajadian, S.A., Honarvar, B. (2018). Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Natural Product Research, 32, 795–803.
Sovová, H. (2020). Steps of supercritical fluid extraction of natural products and their characteristic times. Journal of Supercritical Fluids, 66, 73-79.
STATISTICA (Data Analysis Software System), v.12.0 (2010). Stat-Soft, Inc, USA (www. statsoft.com)
Tang, Y., Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.
Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588.
Te, K. G. D., Go, A. W., Wang, H. J. D., Guevarra, R. G., Cabatingan, L. K., Tabañag, I. D. F., Angkawijaya, A.E., Ju, Y. H. (2020). Extraction of lipids from post-hydrolysis copra cake with hexane as solvent: Kinetic and equilibrium data. Renewable Energy, 158, 311-323.
Wejnerowska, G., Heinrich, P., Gaca, J. (2013). Separation of squalene and oil from Amaranthus seeds by supercritical carbon dioxide. Separation and Purification Technology, 110, 39-43.
Wrona, O., Rafińska, K., Możeński, C., Buszewski, B. (2017). Supercritical fluid extraction of bioactive compounds from plant materials. Journal of AOAC International, 100(6), 1624-1635.
Yi, M. R., Kang, C. H., Bu, H. J. (2017). Anti-inflammatory and tyrosinase inhibition effects of amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resources, 30(2), 144-151.
Published
2021/05/31
Section
Papers