Uticaj tretmana netermalnom plazmom na kristaliničnost celuloze i sadržaj lignina u kukuruznoj stabljici

  • Jovana Grbić Inovacioni centar Tehnološko-metalurškog fakulteta, Univerzitet u Beogradu
  • Aleksandra Đukić-Vuković Tehnološko-metalurški fakultet, Univerzitet u Beogradu
  • Dragana Mladenović Inovacioni centar Tehnološko-metalurškog fakulteta, Univerzitet u Beogradu
  • Saša Lazović Institut za fiziku, Univerzitet u Beogradu
  • Ljiljana Mojović Tehnološko-metalurški fakultet, Univerzitet u Beogradu
Ključne reči: lignoceluloza, netermalna plazma, oksidacija, biorafinerija, degradacija, Fenton proces

Sažetak


Lignocelulozna biomasa predstavlja jeftinu sirovinu koja se može koristiti u fermentacionim procesima za dobijanje biogoriva, biogasa i drugih jedinjenja, zahvaljujući visokom sadržaju ugljenih hidrata. Složena struktura, koja uključuje celulozu, hemicelulozu i lignin, zahteva prethodni tretman biomase kojim se olakšava hidroliza do prostih šećera. Danas se biomasa samo delimično eksploatiše i generiše oko 14% energije na svetskom nivou. To je prevashodno zbog male održivosti najčešće korišćenih fizičkih, hemijskih i fizičko-hemijskih tretmana. Ovi procesi troše veliku količinu energije, imaju malu produktivnost, a toksični sporedni proizvodi koji nastaju tokom tretmana mogu ometati kasnije korake fermentacije.

Tretman biomase naprednim oksidacionim procesima ima veliki potencijal kao ekološki prihvatljiv, tzv. „zeleni“ tretman. Tokom ovog procesa dolazi do stvaranja reaktivnih vrsta (radikala, elektrona, jona i peroksida), koje napadaju celulozu, hemicelulozu i lignin. U ovom radu upoređeni su efekti tretmana kukuruzne stabljike netermalnom plazmom, Fentonovim reagensom i kombinovanog tretmana netermalnom plazmom/Fenton reagensom. Samlevena biomasa kukuruzne stabljike pomešana je sa Fentonovim reagensom i vodonik peroksidom u različitim odnosima, a zatim je podvrgnuta tretmanu netermalnom plazmom. Sadržaj celuloze i hemiceluloze je značajno smanjen u uzorcima tretiranim netermalnom plazmom i u prisustvu i u odsustvu Fe2+. Ipak, najveći stepen redukcije lignoceluloze je postignut pri određenom odnosu biomasa:Fe2+:vodonik peroksid. Primenjeni tretmani su uticali i na hemiceluloznu frakciju, ostavljajući indeks kristaliničnosti celuloze skoro nepromenjenim. Niži sadržaj lignina i manji indeks kristaliničnosti celuloze omogućavaju efikasniju enzimsku hidrolizu tretirane lignoceluloze i nove načine za valorizaciju u fermentacionim procesima.

Reference

Arantes, V., Jellison, J., and Goodell, B. (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biot., 94, 323–338.


Bishop, D. F. et al. (1968). Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters. Ind. Eng. Chem., Process Design Development, 7, 110–117.


Đukić-Vuković, A., Tylewicz, U., Mojović, L., and Gusbeth, C. (2017). Recent advances in pulsed electric field and non-thermal plasma treatments for food and biorefinery applications. Journal on Processing and Energy in Agriculture, 21(2), 61–65.


Final Conference UNDP/GEF Project: Reducing Barriers to Accelerate the Development of Biomass Markets in Serbia. (2019, March).


Foster, C. E., Martin, T. M., and Pauly, M. (2010). Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: Lignin. Journal of Visualized Experiments, 37.


Fukushima, R. S., and Hatfield, R. D. (2001). Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7), 3133–3139.


Gan, Y. Y., Zhou, S. L., Dai, X., Wu, H., Xiong, Z. Y., Qin, Y. H., Ma, J., Yang, L., Wu, Z. K., Wang, T. L., Wang, W. G., and Wang, C. W. (2018). Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis. Bioresource Technology, 265, 394–398.


Jeong, S. Y., and Lee, J. W. (2020). Catalytic effect of iron on sequential Fenton oxidation, hydrothermal treatment, and enzymatic hydrolysis to produce monosaccharide from lignocellulosic biomass. Industrial Crops and Products, 158.


Kanakaraju, D., Glass, B. D., and Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. In Journal of Environmental Management (Vol. 219, pp. 189–207). Academic Press.


Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O 2 and HNO2. Plasma Sources Science and Technology, 23(1).


Milašinović Šeremešić, M., Radosavljević, M., Terzić, D., and Nikolić, V. (2017). The utilizable value of the maize plant (biomass) for silage. 86 Journal on Processing and Energy in Agriculture, 21(2), 86–90.


Nikolić, T., Kostić, M., Praskalo, J., Petronijević, Ž., and Škundrić, P. (2011). Sorpciona svojstva pamuka oksidovanog perjodatom. Chemical Industry and Chemical Engineering Quarterly, 17(3), 367–374.


Popović, A., Milićević, S., Milošević, V., Ivošević, B., Čarapić, J., Jovanović, V., and Povrenović, D. (2019). Fenton process in dispersed systems for industrial wastewater treatment. In Hemijska Industrija (Vol. 73, Issue 1, pp. 47–62). Association of Chemists and Chemical Engineers of Serbia.


Ravindran, R., Sarangapani, C., Jaiswal, S., Cullen, P. J., and Jaiswal, A. K. (2017). Ferric chloride assisted plasma pretreatment of lignocellulose. Bioresource Technology, 243, 327–334.


Sadh, P. K., Duhan, S., and Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. In Bioresources and Bioprocessing (Vol. 5, Issue 1). Springer.


Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. In Biotechnology Advances (Vol. 27, Issue 2, pp. 185–194).


Shang, K., Li, J., and Morent, R. (2019). Hybrid electric discharge plasma technologies for water decontamination: A short review. Plasma Science and Technology, 21.


(USDA) United States Department of Agriculture. (2021). World Agricultural Production.


Walling, C. (1975). Fenton´s reagent revisited. Accts of Chem. Research, 8, 125–131.


World Bioenergy Association, www.worldenergy.org (n.d.). WBA Global bioenergy statistics 2021. Summary Report.


Yang, M., Jin, C., Shuang, E., Liu, J., Zhang, S., Liu, Q., Sheng, K., and Zhang, X. (2019). Fenton Reaction-Modified Corn Stover to Produce Value-Added Chemicals by Ultralow Enzyme Hydrolysis and Maleic Acid and Aluminum Chloride Catalytic Conversion. Energy and Fuels, 33(7), 6429–6435.


Yu, M., Chang, S., Li, D., Zhang, C., Jiang, L., Han, Y., Qi, L., Li, J., and Li, S. (2017). A Comparison of NaOH, Fenton, and Their Combined Pretreatments for Improving Saccharification of Corn Stalks. Energy and Fuels, 31(10), 10983–10989.

Objavljeno
2022/11/29
Rubrika
Članci