POTENCIJALNI RIZICI I PROBLEMI КOD GAJENJA VIŠEGODIŠNJIH ENERGETSКIH USEVA
Sažetak
Proizvodni sistemi druge generacije biogoriva su znatno bolji od sistema prve generacije. Međutim, veličina površina na kojima se gaje zavise od javne podrške i one opadaju kada izostane podrška. Uprkos svim mogućim životno-sredinskim i ekonomskim koristima, višegodišnji energetski usevi trenutno ne igraju značajniju ulogu. Tek treba da se razvije tržište za bioenergetsku biomasu. Smatra se da će u EU osnovni ograničavajući faktor za razvoj biogorivnih useva biti raspoložive zemljišne površine. U jugoistočnoj Evropi, pak, postoji veliki neiskorišćeni potencijal za proizvodnju bioenergije na napuštenim i marginalnim poljoprivrednim površinama. Кritičan faktor u prihvatanju novih useva, kao što su bioenergetski usevi, je njihova profitabilnost u odnosu na postojeće usevne sisteme. Pri tom, višegodišnji energetski usevi predstavljaju i rizične investicije. Ekonomski održiva proizvodnja namenskog energetskog useva biće teško ostvariva na većini zemljišta bonitetnih klasa V-VIII. U pogledu rizičnosti ulaganja poljoprivrednih proizvođača, kukuruz ima prednost nad svim višegodišnjim sistemima energetskih useva. Identifikovano je čak 10 vrsta rizika za njihovu uspešnu proizvodnju: (1) obezbeđenost useva vodom; (2) prisustvo korova u usevu; (3) opasnost od izmrzavanja useva; (4) poleganje useva; (5) bolesti useva i štetočine; (6) kratki žetveni rokovi i varijabilni prinosi; (7) ekonomičnost gajenja na zemljištima nižih bonitetnih klasa; (8) uticaj agrotehnike i agroekoloških uslova na kvalitet biomase; (9) skladištenje požnjevene biomase i opasnost od požara; i (10) ekonomske sankcije, rat i ratno okruženje. Trenutno se smatra da je tranzicija ka 100% obnovljivoj proizvodnji u sektoru električne energije nedostižna. Zbog toga, iako gajenje višegodišnjih energetskih kultura ima perspektivu, ona se mora sistemski planirati i dalje unapređivati.
Reference
Bilandžija, N., Fabijanić, G., Sito, S., Grbor, M., Krononc, Z., Čopec, K., Kovačev, I. (2020). Harvest systems of Miscanthus × giganteus biomass: A Review. Journal of Central European Agriculture, 21(1), 159-167.
Blazquez, J., Fuentes-Bracamontes, R., Bollino, C.A., Nezamuddin, N. (2018). The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 82, 1-5.
Bocquého, G., Jacquet, F. (2010). The adoption of switchgrass and giant miscanthus by farmers: impact of liquidity constraints and risk preferences. Energy Policy, 38(5), 2598–2607.
Cosentino, S.L., Testa, G., Scordia, D., Alexopoulou, E. (2012). Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe. Italian Journal of Agronomy, 7(2), 154-166.
de Vries, S.C., van de Ven, G.W.J., van Ittersum, M.K. (2014). First or second generation biofuel crops in Brandenburg, Germany? A model-based comparison of their production-ecological sustainability. European Journal of Agronomy, 52, 166-179.
Dornburg, V., van Vuuren, D., van de Ven, G., Langeveld, H., Meeusen, M., Banse, M., van Oorschot, M., Ros, J., van den Born, G.J., Aiking, H., Londo, M., Mozaffarian, H., Verweij, P., Lyseng, E., Faaij, A. (2010). Bioenergy revisited: Key factors in global potentials of bioenergy. Energy and Environmental Science, 3(3), 258–267.
Dželetović, Ž.S., Mihailović, N.Lj. (2011). Status, development and prospects of using bioenergy crops in the world and in Serbia. Journal of Processing and Energy in Agriculture, 15(2), 90-93.
Dželetović, Ž., Mihailović, N., Živanović, I. (2013a). Prospects of using bioenergy crop Miscanthus × giganteus in Serbia. In: Materials and processes for energy: communicating current research and technological developments (Ed. Méndez-Vilas, А.), Formatex Research Center, Badajoz, Spain, pp. 360-370.
Dželetović, Ž., Živanović, I., Pivić, R., Maksimović, J. (2013b). Water supply and biomass production of Miscanthus × giganteus. In: Proceedings the 1st International Congress on Soil Science and XIII National Congress in Soil Science „Soil-Water-Plant“( Ed. Saljnikov, E.R.), Soil Science Society of Serbia / Soil Science Institute, Belgrade, Serbia, pp. 435-450.
Dželetović, Ž.S., Andrejić, G.Z., Živanović, I.B., Pivić, R.N., Simić, A.S., Maksimović, J.S. (2014a). Zaštita, uređenje i održivo korišćenje poljoprivrednog zemljišta na teritoriji Republike Srbije gajenjem bioenergetske trave Miscanthus × giganteus. Institut za primenu nuklearne energije, Zemun, Srbija.
Dželetović, Ž., Maksimović, J., Živanović, I. (2014b). Yield of Miscanthus × giganteus during crop establishment at two locations in Serbia. Journal on Processing and Energy in Agriculture, 18(2), 62-64.
Dželetović, Ž., Mihailović, N., Andrejić, G., Simić, D. (2016). Utilization of marginal lands for production Miscanthus × gigantes Greef et Deu. Zbornik naučnih radova Instituta PKB Agroekonomik, 22(1-2), 157-164.
Eaves, J., Eaves, S. (2007). Renewable corn-ethanol and energy security. Energy Policy, 35(11), 5958–5963.
El Bassam, N., Huismann, W. (2001). Harvesting and Storage of Miscanthus. In: Miscanthus for energy and fibre (Eds. Jones, M.B., Walsh, M.), James & James, London, 86–108.
Fargione, J., Hill, J., Tilaman, D., Polasky, S., Hawthorne, P. (2008). Land Clearing and the Biofuel Carbon Debt. Science, 319(5867), 1235–1238.
Fewell, J. E., Bergtold, J. S., & Williams, J. R. (2016). Farmers’ willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas. Energy Economics, 55, 292–302.
Fonteyne, S., Roldán-Ruiz, I., Muylle, H., De Swaef, T., Reheul, D., Lootens, P. (2016). A Review of Frost and Chilling Stress in Miscanthus and Its Importance to Biomass Yield. In: Perennial Biomass Crops for a Resource-Constrained World (Eds. Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G. and Jones, M.), Springer, Cham, Switzerland, 127-144.
Friesen, P.C., Peixoto, M.M., Lee, D.K., Sage, R.F. (2015). Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates. Journal of Experimental Botany, 66(14), 4403–4413.
Gillich, C., Narjes, M., Krimly, T., Lippert, C. (2019). Combining choice modeling estimates and stochastic simulations to assess the potential of new crops - The case of lignocellulosic perennials in Southwestern Germany. GCB Bioenergy, 11(1), 289–303.
Golusin, M., Tesic, Z., Ostojic, A. (2010). The analysis of the renewable energy production sector in Serbia. Renewable and Sustainable Energy Reviews, 14(5), 1477-1483.
Gouzaye, A., Epplin, F.M. (2016). Restricting Second-Generation Energy Crop Production to Marginal Land. BioEnergy Research, 9(1), 257-269.
Guldhe, A., Singh, B., Renuka, N., Singh, P., Misra, R., Bux, F. (2017). Bioenergy: A Sustainable Approach for Cleaner Environments. In: Phytoremediation Potential of Bioenergy Plants (Eds. Bauddh, K., Singh, B. and Korstad, J.), Springer Nature Singapore Pte Ltd., 47-62.
Hoover, A., Emerson, R., Hansen, J., Hartley, D., Ray, A. (2019). Drought Impacts on Bioenergy Supply System Risk and Biomass Composition. In: Drought - Detection and Solutions (Ed. Ondrasek, G.), IntechOpen Ltd., London, p. 15. doi:10.5772/intechopen.85295
Jezierska-Thöle, A., Rudnicki, R., Kluba, M. (2016). Development of energy crops cultivation for biomass production in Poland. Renewable and Sustainable Energy Reviews, 62, 534-545.
Johnston, C.M.T., van Kooten, G.C. (2016). Global trade impacts of increasing Europe’s bioenergy demand. Journal of Forest Economics 23, 27–44.
Kapustyanchik S.Yu, Yakimenko, V.N. (2020). Miscanthus is a promising raw material, energy and phytomeliorative crop (in Russian with English abstract). The Journal of Soils and Environment, 3(3), e126.
Karp, A., Shield, L. (2008). Bioenergy from plants and sustainable yield challenge. New Phytologist, 179, 15-32.
Kells, B.J., Swinton, S.M. (2014). Profitability of cellulosic biomass production in the northern Great Lakes Region. Agronomy Journal, 106(2), 397–406.
Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security, 6, 34–42.
Lewandowski, I. (2016). The Increasing Demand for Biomass in a Growing Bioeconomy. In: Perennial Biomass Crops for a Resource-Constrained World (Eds. Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M.), Springer, Cham, Switzerland, 3-13.
Lovett, A.A., Sünnenberg, G.M., Richter, G.M., Dailey, A.G., Riche, A.B., Karp, A. (2009). Land Use Implications of Increased Biomass Production Identified by GIS-Based Suitability and Yield Mapping for Miscanthus in England. Bioenergy Research, 2(1-2), 17-28.
Maksimović, J. (2016). Uticaj gustine sadnje na zakorovljenost zasada i prinos biomase miskantusa (Miscanthus × giganteus Greef et Deu.). Disertacija. Poljoprivredni fakultet, Univerzitet u Beogradu, Beograd, p. 126.
McCalmont, J.P., Hastings, A., McNamara, N.P., Richter, G.M., Robson, P., Donnison, I.S., Clifton-Brown, J. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB-Bioenergy, 9(3), 489-507.
Mishra, U., Torn, M.S., Fingerman, K. (2013). Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. GCB Bioenergy, 5(4), 391–399.
Mola-Yudego, B., Dimitriou, I., Gonzalez-Garcia, S., Gritten, D., Aronsson, P. (2014). A conceptual framework for the introduction of energy crops. Renewable Energy, 72, 29-38.
Mueller, S.A., Anderson, J.E., Wallington, T.J. (2011). Impact of biofuel production and other supply and demand factors on food price increases in 2008. Biomass and Bioenergy, 35(5), 1623-1632.
Özdoğan, T., Geren, H. (2019). Enerji Bitkisi Olarak Kullanılan Filotu (Miscanthus × giganteus)’nda Farklı Azot Seviyelerinin Biyokütle Verimi ve Bazı Verim Özelliklerine Etkisi Üzerine Bir Ön Araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(2), 257-262.
Pandey, V.C., Bajpai, O., Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58–73.
Płažek, A., Dubert, F., Janowiak, F., Krępski, T., Tatrzańska, M. (2011). Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. European Journal of Agronomy, 34(3), 163–171.
Scarlat, N., Dallemand, J.F., Monforti-Ferario, F., Nita, V. (2015). The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environmental Development, 15, 3–34.
Schiermeier, Q., Tollefson, J., Scully, T., Witze, A., Morton, O. (2008). Energy alternatives: electricity without carbon. Nature, 454, 816–823.
Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T. (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, 319(5867), 1238–1240.
Shrestha, D.S., Staab, B.D., Duffield, J.A. (2019). Biofuel impact on food prices index and land use change. Biomass and Bioenergy, 124, 43-53.
Singh, B.P. (2013). Biofuel Crop Sustainability Paradigm. In: Biofuel Crop Sustainability (Ed. Singh, B.P.), John Wiley & Sons, Inc., New York, pp. 3-29.
Skevas, T., Swinton, S.М., Tanner, S., Sanford, G., Thelen, K.D. (2016). Investment risk in bioenergy crops. GCB Bioenegy, 8(6), 1162-1177.
Voća, N., Bilandžija, N., Leto, J., Cerovečki, L., Krička, T. (2019). Revitalizaton of abandoned agricultural lands in Croatia using the energy crop Miscanthus × giganteus. Journal on Processing and Energy in Agriculture, 23(3), 128-131.
Zhu, X-G., Long, S.P., Ort, D.R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.