PRIMENA PROCENE ŽIVOTNOG CIKLUSA U SEKTORU AMBALAŽE ZA POLIMERNE I BIOPOLIMERNE MATERIJALE – PREGLED

  • Danijela Šuput Tehnološki fakultet Novi Sad, Univerzitet u Novom Sadu
  • Senka Popović
  • Jovana Ugarković
  • Nevena Hromiš
Ključne reči: životni ciklus, ambalaža, polimeri, biopolimeri

Sažetak


Među mnogim važnim zahtevima koje moraju ispunjavati ambalažni materijali, ekološka prihvatljivost je svojstvo koje je postalo neophodno za svaki materijal koji treba da bude konkurentan na tržištu. Analiza životnog ciklusa (LCA) je analitički instrument koji obezbeđuje okvir za analizu uticaja proizvoda i usluga na životnu sredinu, odnosno pruža razumevanje i mogućnost poređenja različitih proizvoda. LCA proučava korišćenje resursa i posledice emisija zagađujućih materija po životnu sredinu tokom celokupnog životnog veka proizvoda od eksploatacije sirovina, preko proizvodnje, upotrebe i postupanja na kraju životnog ciklusa, odnosno recikliranja i konačnog odlaganja. Ovaj rad se bavi prikazom rezultata LCA analiza različitih komercijalnih polimernih ambalažnih materijala, kao i rezultata LCA analiza biopolimernih materijala. Iako se LCA suočava sa problemom heterogenosti podataka, jer se neke studije fokusiraju na pojedinačne segmente, a neke se odnose na sve aspekte procesa, kao i sa problemom interpretacije heterogenih rezultata, jer izlazne parametre proizvoljno bira istraživač, ipak se može zaključiti da dostupne LCA studije i ekološke procene podržavaju dalji razvoj biopolimernih polimera. Kada se uporede biopolimerni materijali sa komercijalnim sintetičkim polimerima, oni imaju prednosti – manju potrošnju fosilnih goriva i nižu stopu emisije gasova staklene bašte iz celog životnog ciklusa.

Reference

Azapagic, A., Emsley, A., Hamerton, I. (2003). Design for the environment: the life cycle approach. In: Hamerton, I., editor. Polymers, the environment and sustainable development. 1st edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 125-154.


Belboom, S., Léonard, A. (2016). Does biobased polymer achieve better environmental impacts than fossil polymer? Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass and Bioenergy, 85, 159-167.


Bohlmann, M. (2004). Biodegradable Packaging Life-Cycle Assessment. Envoronmental Progress, 23 (4), 342-346.


De Bruijn, H., Van Duin, R., Huijbregts, M., A., J. (2002). Handbook on Life Cycle Assessment – Operational Guide to the ISO Standards, Kluwer Academic Publishers, Dordecht.


Flanigan, L., Frischknecht, R., Montalbo, T. (2013). An Analysis of Life Cycle Assessment in Packaging for Food & Beverage Applications, United Nations Environment Programme and SETAC.


Gironi F, Piemonte V. (2010). Life cycle assessment of polylactic acid and PET bottles for drinking water. Environmental Progress & Sustainable Energy, 30 (3), 459–468.


Gomes, T.S., Visconte, L.L.Y., Pacheco, E.B.A.V. (2019). Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview. Journal of Polymers and the Environment, 27, 533–548.


Grigale, Z., Simanovska, J., Kalnings, M., Dzene, A., Tupureina, V. (2010). Biodegradable Packaging from Life Cycle Perspective. Scientific Journal of Riga Technical University Material - Science and Applied Chemistry, 21, 90-97.


Hottle, T.A., Bilec, M.M., Landis, A.E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98, 1898-1907.


Ingrao, C., Gigli, M., Siracusa, V. (2017). An Attributional Life Cycle Assessment Application Experience to Highlight Environmental Hotspots in the Production of Foamy Polylactic Acid Trays for Fresh-food Packaging Usage. Journal of Cleaner Production, 150, 93–103.


Khoo, H.H., Tan, B.H. (2010). Environmental impacts of conventional plastic and bio-based carrier bags, Part 2: End-of-life options. The International Journal of Life Cycle Assessment, 15, 338-345.


Matthews, C., Moran, F., Jaiswal, A.K., 2021. A review on European union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 125263.


Moretti, C., Hamelin, L., Geest Jakobsen, L., Junginger, M.H., Steingrimsdottir, M.M., Høibye, L., Shen, L. (2021). Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resources, Conservation & Recycling, 169, 105508.


Nikolić, S., Kiss, F., Mladenović, V., Bukurov, M., Stanković, J. (2015). Corn-based polylactide vs. PET bottles–Cradle-to-gate LCA and implications. Materiale Plastice, 52 (4), 517-521.


Ramesh, P., Vinodh, S. (2020). State of art review on Life Cycle Assessment of polymers. International Journal of Sustainable Engineering, 13 (6), 411-422.


Tamburini, E., Costa, S., Summa, D., Battistella, L., Fano, E.A., Castaldelli, G. (2021). Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles – What is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environmental Research, 196, 110974.


Wolfson, A., Dominguez-Ramos, A., Irabien, A., 2019. From goods to services: the life cycle assessment perspective. Journal of Service Science Research, 11 (1), 17–45.


Xie, M., Li, L., Qiao, Q., Sun, Q., Sun, T. (2011). A comparative study on milk packaging using life cycle assessment: from PA-PE-Al laminate and polyethylene in China. Journal of Cleaner Production, 19, 2100-2106.


Yates, M.R., Barlow, C.Y. (2013). Life cycle assessments of biodegradable, commercial biopolymers - A critical review. Resources, Conversation and Recycling, 78, 54-66.

Objavljeno
2022/11/29
Rubrika
Članci