UTICAJ ESENCIJALNIH ULJA NA OSOBINE BIOPOLIMERNIH FILMOVA NA BAZI DIVLJEG LANA (CAMELINA SATIVA)

  • Danijela Šuput Tehnološki fakultet Novi Sad, Univerzitet u Novom Sadu
  • Biljana Ločar
  • Nevena Hromiš
  • Senka Popović
  • Slađana Rakita
  • Nedeljka Spasevski
Ključne reči: Camelina Sativa, esencijalna ulja, biopolimerni filmovi

Sažetak


Poslednjih decenija naučna istraživanja su fokusirana na oblast biopolimernih materijala zbog njihovih brojnih prednosti i činjenice da se mogu koristiti kao dodatak ili potpuna zamena komercijalnih polimernih materijala. Ipak, zbog svoje jake hidrofilnosti, biopolimerni materijali imaju slabe barijerne osobine prema vodenoj pari i umerene mehaničke osobine, što je glavno ograničenje za njihovu široku primenu. Optimizacija svojstava predstavlja izazov u oblasti biopolimernih materijala, odnosno u oblasti aktivne ambalaže. Cilj ovog rada je aktivacija biopolimernog materijala na bazi pogače divljeg lana (Camelina Sativa) esencijalnim uljima eukaliptusa i ruzmarina dodatim u različitim koncentracijama (0,5%, 1% i 2%). Pogača divljeg lana, zaostala nakon hladnog ceđenja ulja, iskorišćena je za dobijanje biopolimernih filmova. U cilju dobijanja aktivne ambalaže, esencijalna ulja su dodata u ovaj biopolimerni material i ispitan je uticaj dodatka essencijalnih ulja na fizičko-hemijske, mehaničke, barijerne i biološke osobine biopolimernih filmova na bazi pogače divljeg lana. Dobijeni rezultati su pokazali najznačajniji uticaj na propustljivost vodene pare. Kontrolni uzorak imao je vrednost propustljivosti vodene pare 5,43 g/m2h, dok je kod uzorka sa 2% dodatog esencijalnog ulja eukaliptusa ta vrednost iznosila 3,14 g/m2h. Antioksidativna aktivnost je potvrđena i kod kontrolnog uzorka bez dodatih esencijalnih ulja (60,10%), ali je dodatkom 2% esencijalnog ulja eukalipusa ova vrednost povećana na 78,54%. Esencijalno ulje eukaliptusa se pokazalo efektnijim od ulja ruzmarina na ispitane osobine filmova. Dodavanje esencijalnih ulja biopolimernim filmovima proširuje spektar funkcionalnih svojstava, uključujući unapređenje mehaničkih, barijernih i bioloških osobina. Dalja istraživanja potrebno je usmeriti ka kompatibilnosti, stabilnosti i prihvatljivosti za potrošače.

Reference

Akhter, R., Masoodi, F.A., Wani, T.A., & Rather, S.A. (2019). Functional characterization of biopolymer-based composite film: Incorporation of natural essential oils and antimicrobial agents. International Journal of Biological Macromolecules, 137 (2019) 1245–1255. https://doi.org/10.1016/j.ijbiomac.2019.06.214
Atarés, L. & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. https://doi.org/10.1016/j.tifs.2015.12.001
Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., Garcia-Oliveira, P., & Prieto, M.A. (2021) Essential Oils and Their Application on Active Packaging Systems: A Review. Resources, 10(1):7. https://doi.org/10.3390/resources10010007
Castro-Rosas, J., Cruz-Galvez, A.M., Gomez-Aldapa, C.A., Falfan-Cortes, R.N., Guzman-Ortiz, F.A., & Rodrıguez-Marın, M.L. (2016). Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. International Journal of Food Science and Technology, 51(9), 1967-1978. https://doi.org/10.1111/ijfs.13183
Christina, K., Subbiah, K., Arulraj, P., Krishnan, S. K., & Sathishkumar, P. (2023). A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose—A review. International Journal of Biological Macromolecules, 128550. https://doi.org/10.1016/j.ijbiomac.2023.128550
Čmiková, N., Galovičová, L., Schwarzová, M., Vukic, M.D., Vukovic, N.L., Kowalczewski, P.Ł., Bakay, L., Kluz, M.I., Puchalski, C., & Kačániová, M. (2023). Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants (Basel). 28;12(5):1076. https://doi.org/10.3390/plants12051076
Galus, S. &Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86, https://doi.org/10.1016/j.foodhyd.2015.06.013
Gursoy, M., Sargin, I., Mujtaba, M., Akyuz, B., Ilk, S., Akyuz, L., Kaya, M., Cakmak, Y.S., Salaberria, A.M., Labidi, J., & Erdem, N. (2018). False flax (Camelina sativa) seed oil as a suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films. International journal of biological macromolecules, 114, 1224-1232. https://doi.org/10.1016/j.ijbiomac.2018.04.029
Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International journal of biological macromolecules, 109, 1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
Jiang, Y., Wu, N., Fu, Y.-J., Wang, W., Luo, M., Zhao, C.-J., Zu, Y.-G., & Liu, X.-L. (2011). Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environmental Toxicology and Pharmacology, 32 (1), 63-68. https://doi.org/10.1016/j.etap.2011.03.011
Jin, D., Liu, X., Zheng, X., Wang, X., & He, J. (2016). Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry, 204, 427–436. https://doi.org/10.1016/j.foodchem.2016.02.119
Klai, N., Yadav, B., El Hachimi, O., Pandey, A., Sellamuthu, B., & Tyagi, R.D. (2021). Agro-Industrial Waste Valorization for Biopolymer Production and Life-Cycle Assessment Toward Circular Bioeconomy. In Pandey, A., Tyagi, R.D., Varjani, S. (Eds.) Biomass, Biofuels, Biochemical (pp. 515-555). Elsevier: Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-12-821878-5.00007-6
Li, F., Li, Z., Wei, Y., Zhang, L., Ning, E., Yu, L., Zhu, J., Wang, X., Ma, Y., & Fan, Y. (2023). Qualitative and quantitative analysis of polyphenols in camelina seed and their antioxidant activities. Natural Product Research, 37 (11), 1888-1891. https://doi.org/10.1080/14786419.2022.2121829
Lorevice, M.V., Otoni, C.G., Moura, M.R.D., & Mattoso, L.H.C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low methyl pectin films. Food Hydrocolloids, 52 732–740. https://doi.org/10.1016/j.foodhyd.2015.08.003
Mahdavi, V., Hosseini, S.E., & Sharifan, A. (2018). Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Science and Nutrition, 6, 269–279. https://doi.org/10.1002/fsn3.544
Mirpoor, S.F., Giosafatto, C.V.L., Mariniello, L., D’Agostino, A., D’Agostino, M., Cammarota, M., Schiraldi, C., & Porta, R. (2022). Argan (Argania spinosa L.) Seed Oil Cake as a Potential Source of Protein-Based Film Matrix for Pharmaco-Cosmetic Ap-plications. International journal of molecular sciences, 23, 8478. https://doi.org/10.3390/ijms23158478
Popović, S., Hromiš, N., Šuput, D., Bulut, S., Romanić, R., & Lazić, V. (2020). Valorization of by-products from the production of pressed edible oils to produce biopolymer films. In Ramadan, M.F. (Ed.) Cold Pressed Oils (pp. 15-30). Academic Press: Cambridge, Massachusetts, USA. https://doi.org/10.1016/B978-0-12-818188-1.00003-7
Reis, C.A., Gomes, A., & do Amaral Sobral, P.J. (2023). Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications—A Review. Foods, 12(19):3602. https://doi.org/10.3390/foods12193602
Rocca-Smith, J.R., Marcuzzo, E., Karbowiak, T., Centa, J., Giacometti, M., Scapin, F., Venir, E., Sensidoni, A., Debeaufort, F. (2016). Effect of lipid incorporation on functional properties of wheat gluten based edible films. Journal of Cereal Science, 69, 275–282. https://doi.org/10.1016/j.jcs.2016.04.001
Sivakanthan, S., Rajendran, S., Gamage, A., Madhujith, T., & Mani, S. (2020). Antioxidant and antimicrobial applications of biopolymers: A review. Food Research International, 136, 109327, https://doi.org/10.1016/j.foodres.2020.109327
Šuput, D., Pezo, L., Rakita, S., Spasevski, N., Tomičić, R., Hromiš, N., & Popović, S. (2024). Camelina sativa Oilseed Cake as a Potential Source of Biopolymer Films: A Chemometric Approach to Synthesis, Characterization, and Optimization. Coatings, 14(1):95. https://doi.org/10.3390/coatings14010095
Šuput, D., Popović, S., Hromiš, N., Bulut, S., & Lazić, V. (2019). Biopolymer film properties change affected by essential oils addition. Journal on Processing and Energy in Agriculture, 23(2), 61-65. https://doi.org/10.5937/jpea1902061S
Terpinc, P., Polak, T., Makuc, D., Poklar Ulrih, N., & Abramovič, H. (2012). The occurrence and characterization of phenolic compounds in Camelina sativa seed, cake and oil. Food Chemistry, 131 (2), 580-589. https://doi.org/10.1016/j.foodchem.2011.09.033
Tian, B., Liu, J., Yang, W., & Wan, J. B. (2023). Biopolymer Food Packaging Films Incorporated with Essential Oils. Journal of Agricultural and Food Chemistry, 71(3), 1325-1347. https://doi.org/10.1021/acs.jafc.2c07409
Tomić, A., Šovljanski, O., & Erceg, T. (2023). Insight on Incorporation of Essential Oils as Antimicrobial Substances in Biopolymer-Based Active Packaging. Antibiotics, 12(9), 1473. https://doi.org/10.3390/antibiotics12091473
Varghese, S.A., Siengchin, S. & Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. Food Bioscience, 38, 100785, https://doi.org/10.1016/j.fbio.2020.100785
Venkatachalam, K., Rakkapao, N., & Lekjing, S. (2023). Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. Membranes, 13, 161. https://doi.org/10.3390/membranes13020161
Yousefi, M., Azizi, M., Mohammadifar, M.A., & Ehsani, A. (2018). Antimicrobial coatings and films on meats: A perspective on the application of antimicrobial edible films or coatings on meats from the past to future. Bali Medical Journal, 7(1), 87-96. https://doi.org/10.15562/bmj.v7i1.759
Objavljeno
2024/04/04
Rubrika
Članci