DEGRADABLE PACKAGING MATERIALS – SOURCES, APPLICATION AND DECOMPOSITION ROUTES
Abstract
There are many biodegradable and recyclable packaging materials available, alternatives for plastics: paper and cardboard; biodegradable polyethene (degradagle due to additive incorporated during production, whose role is to lead to the polyethylene break down into CO2, H2O, biomass and minerals when in landfill) and biodegradable plastic (made from renewable biomass-biopolymers in a relatively energy efficient process). The decomposition routes of degradable materials are reflected in the degradation for which realization a physico-chemical stimulus is required and biodegradation for which microorganisms are responsible. The global biodegradable plastic market was valued at $1.6 billion in 2019 and it is expected to reach $4.2 billion by 2027. The largest segment by application of biodegradable materials is in packaging with a market share of more than 60%. Some examples of degradable packaging existing on the market will be presented in the paper.
References
Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., Leong, K.H. (2011). An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 36 (8), 1015-1049.
Barone, J.R., Arikan, O. (2007). Composting and biodegradation of thermally processed feather keratin polymer. Polymer Degradation and Stability, 92 (5), 859–867.
Biodegradable Plastic Market: https://www.marketsandmarkets.com/Market-Reports/biodegradable-plastics-93.html?gclid=Cj0KCQiA4L2BBhCvARIsAO0SBdZaUtKTHHsCUaZl-tT5cNe1B1L0q9pNpEBZxEQE_U-1G7VqlYhrRTUaAqjuEALw_wcB
Botana, A., Mollo, M., Eisenberg, P., Torres Sanches, R.M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Bioresource Technology, 4, 263–270.
Chiellini, E. (2008). Enviromentally compatible food packaging. Woodhead publishing limited, Cambridge England, 8–10.
Emadian, S.M., Onay, T.T., Demirel, B. (2017). Biodegradation of bioplastics in natural environments, Waste Management, 59, 526-536.
Han, Y., Yu, M., Wang, L. (2018). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, 15, 35–42.
https://www.paperrecycles.org/statistics/paper-paperboard-recovery
https://www.thebalancesmb.com/paper-recycling-facts-figures-and-information-sources-2877868
Ivankovic, A., Karlo, Zeljko, Talic, S., Martinovic Bevanda, A., Lasic, M. (2017). Review:Biodegradable packagingin the food industry. Journal of Food Safety and Food Quality, 68 (2), 23–52.
Jabeen, N., Majid, I., Nayik, G.A. (2015). Bioplastics and food packaging: A review. Cogent Food & Agriculture, 1(1), 1117749.
Krzan, A., Hemjinda, S., Miertus, S., Corti, A., Chiellini, E. (2006). Standardization and certification in the area of environmentally degradable plastics. Polymer Degradation and Stability, 91 (12), 2819-2833.
Lazić, V., Šuput, D., Krkić, N., Gvozdenović, J., Popović, S. (2011). Struktura, mehanizmi razgradnje i primena biorazgradivih polimera, Zbornik radova Treća međunarodna naučno-stručna konferencija o upravljanju otpadom (Коpaonik, 18-21.10.2011.).
Li, Z., Yang, J., Loh, X.J. (2016). Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials, 8, e265.
Lin, X., Fan, X., Li, R., Li, Z., Ren, T., Ren, X., Huang, T.S. (2018). Preparation and characterization of PHB/PBAT based biodegradable antibacterial hydrophobic nanofibrous membranes. Polymers for Advanced Technologies. 29, 481-489.
Popović, S., Lazić, V., Hromiš, N., Šuput, D., Bulut S. (2018). Biopolymer packaging materials for food shelf-life prolongation. In: Biopolymers for food design, Ed: Grumezescu & Holban, Academic Press, Elsevier, 223-277.
Rasal, R.M., Janorkar, A.V., Hirt, D.E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science. 35, 338-356.
Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26 (3), 246-265.
Singh, B., Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93 (3), 561-584.
Šuput, D., Popović, S., Hromiš, N., Bulut, S., Lazić, V. (2019). Biopolymer films properties change affected by essential oils addition. Journal on Processing and Energy in Agriculture, 23 (2), 61-65.
Šuput, D. (2016a). Sinteza, karakterizacija, optimizacija svojstava i primena jestivog, aktivnog ambalažnog materijala na bazi skroba. Doktorska disertacija. Tehnološki Fakultet Novi Sad.
Šuput, D., Lazić, V., Pezo, l., Markov, S., Vaštag, Ž., Popović, Lj., Radulović, A., Ostojić, S., Zlatanović, S., Popović, S. (2016b). Characterization of Starch Edible Films with Different Essential Oils Addition. Polish Journal of Food and Nutrition Science, 66 (4), 277–285.
Šuput, D., Lazić, V., Popović, S., Hromiš, N. (2015). Edible films and coatings – sources, properties and application. Food and Feed Research. 42 (1), 11-22.
Tajeddin, B., Arabkhedri, M. (2020). Polymers and food packaging. In: Polymer Science and Innovative Applications. AlMaadeed, M., Ponnamma, D., Carignano, M. (Eds), Elsevier.
U.S. Environmental Protection Agency (EPA): https://www.epa.gov/
Wackett, L.P. (2008). Polylactic acid (PLA) An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Microbial biotechnology, 1 (5), 432–433.
Wiles, D.M., Scott, G. (2006). Polyolefins with controlled environmental degradability. Polymer Degradation and Stability, 91 (7), 1581–1592.
Xi, B., Zhaoa, X., Hea, X., Huanga, C., Tana, W., Gaoa, R., Zhanga, H., Lia, D. (2016). Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresource Technology, 219, 204–211.
Yadav, A., Mangaraj, S., Singh, R., Naveen Kumar, M., Arora, S. (2018). Biopolymers as packaging material in food and allied industry. International Journal of Chemical Studies, 6 (2), 2411-2418.