Engleski
Sažetak
At the beginning and during the development of civilization, natural sources were the only available source of energy. With the development of society and industry, they were replaced by intensive use of fossil fuels. Non-renewability and negative impact on the environment called into question the rationality of using such sources. Therefore, natural sources of energy are becoming more and more important, especially biomass, which is becoming an important source of energy due to its ecological advantages. There are numerous ways to convert agricultural biomass into different forms of biofuel. Thermochemical conversion includes a process of pyrolysis in which, under the influence of a high temperature of 400 to 600 °C without the presence of oxygen, very valuable products are obtained in the form of biochar. Agricultural biomass of the main agricultural crops (corn, wheat, barley, oats, triticale, rye, soybeans, oilseeds and sunflower) was used for this research. The obtained results show that the pyrolysis process improves its energy properties and that agricultural biomass is very suitable as a raw material for direct combustion. Moreover, the mentioned raw materials are characterized by significant pyrolytic conversion potential, i.e. biochar production ranges from 30.03% to 47.0%. Similarly, the heating value (HHV) of biochar after the pyrolysis process increased to 27.11 MJ/kg, which proves that agricultural biomass is a good source of energy per unit mass.
Reference
Journal Article :
Barglowicz, J. (2014). Content of chosen macroelements in biomass of Virginia mallow (Sida hermaphrodita Rusby). Journal of Central European Agriculture. https://doi.org/10.5513/jcea.v15i3.2743
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2), 202-214. https://doi.org/10.1111/gcbb.12037
Bilandzija, N. (2012). Energy potential of fruit tree pruned biomass in Croatia. Spanish Journal of Agricultural Research, (2), 292-298. http://dx.doi.org/10.5424/sjar/2012102-126-11
Bilandžija, N., Krička, T., Matin, A., Leto, J., & Grubor, M. (2018). Effect of harvest season on the fuel properties of Sida hermaphrodita (L.) Rusby biomass as solid biofuel. Energies, 11(12), 3398. https://doi.org/10.3390/en11123398
Borkowska, H., & Lipiński, W. (2008). Comparison of content of selected elements in biomass of Sida hermaphrodita grown under various soil conditions. Acta Agrophysica, 11(3), 589-595.
Chhiti, Y., & Kemiha, M. (2013). Thermal conversion of biomass, pyrolysis and gasification. International Journal of Engineering and Science (IJES), 2(3), 75-85.
Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy, 5(2), 122-131. https://doi.org/10.1111/gcbb.12030
Das, S. K., Ghosh, G. K., & Avasthe, R. (2021). Applications of biomass derived biochar in modern science and technology. Environmental Technology & Innovation, 21, 101306. https://doi.org/10.1016/j.eti.2020.101306
Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion and Management, 42(11), 1357-1378. https://doi.org/10.1016/S0196-8904(00)00137-0
Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable energy, 69, 114-122. https://doi.org/10.1016/j.renene.2014.02.044
Femenia, A., Rossello, C., Mulet, A., & Canellas, J. (1995). Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural and Food Chemistry, 43(2), 356-361. https://doi.org/10.1021/jf00050a018
Goyal, H. B., Seal, D., & Saxena, R. C. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews, 12(2), 504-517. https://doi.org/10.1016/j.rser.2006.07.014
Grubor, M., Krička, T., Jurišić, V., Bilandžija, N., Voća, N., Matin, A., & Antunović, A. (2015). Iskoristivost slame žitarica za proizvodnju zelene energije. Krmiva: Časopis o hranidbi životinja, proizvodnji i tehnologiji krme, 57(2), 63-68.
Guizani, C., Jeguirim, M., Valin, S., Limousy, L., & Salvador, S. (2017). Biomass chars: The effects of pyrolysis conditions on their morphology, structure, chemical properties and reactivity. Energies, 10(6), 796. https://doi.org/10.3390/en10060796
Harussani, M. M., Sapuan, S. M., Khalina, A., Ilyas, R. A., & Hazrol, M. D. (2020, November). Review on green technology pyrolysis for plastic wastes. In Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites, 50-53.
Hodgson, E. M., Lister, S. J., Bridgwater, A. V., Clifton-Brown, J., & Donnison, I. S. (2010). Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass and Bioenergy, 34(5), 652-660. https://doi.org/10.1016/j.biombioe.2010.01.008
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), 4952-5001. https://doi.org/10.3390/en5124952
Khan, S., Khan, M. A., Hanjra, M. A., & Mu, J. (2009). Pathways to reduce the environmental footprints of water and energy inputs in food production. Food policy, 34(2), 141-149. https://doi.org/10.1016/j.foodpol.2008.11.002
Kiš, D., Jovičić, N., Matin, A., Kalambura, S., Vila, S., & Guberac, S. (2017). Energy value of agricultural spelt residue (Triticum spelta L.)–forgotten cultures. Tehnički vjesnik, 24(2), 369-373. https://doi.org/10.17559/TV-20170406124003
Krička, T., Bilandžija, N., Jurisic, V., Voca, N., & Matin, A. (2012) Energy analysis of main residual biomass in Croatia. African Journal of Agricultural Research, 48, 7, 6383-6388. https://doi.org/10.5897/AJAR11.2477.
Krička, T., Matin, A., Bilandžija, N., Jurišić, V., Antonović, A., Voćal, N., & Grubor, M. (2017). Biomass valorisation of Arundo donax L., Miscanthus× giganteus and Sida hermaphrodita for biofuel production. International agrophysics, 31(4). https://doi: 10.1515/intag-2016-0085
Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels, bioproducts and biorefining, 3(5), 547-562. https://doi.org/10.1002/bbb.169
Lewandowski, I., Scurlock, J. M., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and bioenergy, 25(4), 335-361. https://doi.org/10.1016/S0961-9534(03)00030-8
Masiá, A. T., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11-12), 1071-1081. https://doi.org/10.1016/j.fuproc.2007.06.011
Matin, A., Brandić, I., Voća, N., Bilandžija, N., Matin, B., Jurišić, V., Antonović, A., & Krička, T. (2023). Changes in the Properties of Hazelnut Shells Due to Conduction Drying. Agriculture, 13(3), 589. https://doi.org/10.3390/agriculture13030589
Matin, A., Majdak, T., Krička, T., & Grubor, M. (2019). Valorization of sunflower husk after seeds convection drying for solid fuel production. Journal of Central European Agriculture, 20(1), 389-401. https://doi.org/10.5513/JCEA01/20.1.2018
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource technology, 83(1), 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
Monti, A., Di Virgilio, N., & Venturi, G. (2008). Mineral composition and ash content of six major energy crops. Biomass and bioenergy, 32(3), 216-223. https://doi.org/10.1016/j.biombioe.2007.09.012
Muh, E., Tabet, F., & Amara, S. (2021). Biomass Conversion to Fuels and Value-Added Chemicals: A Comprehensive Review of the Thermochemical Processes. Curr. Altern. Energy, 4, 3-25. https://dio..org10.2174/2405463103666191022121648
Porbatzki, D., Stemmler, M., & Müller, M. (2011). Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass and bioenergy, 35, S79-S86. https://doi.org/10.1016/j.biombioe.2011.04.001
Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and sustainable energy reviews, 13(1), 167-178. https://doi.org/10.1016/j.rser.2007.07.011
Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Husin, M. H. M., & Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31-39. https://doi.org/10.1016/j.jaap.2014.01.021
Sohaib, M., Kim, C. H., & Kim, J. M. (2017). A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors, 17(12), 2876. https://doi.org/10.3390/s17122876
Tag, A. T., Duman, G., Ucar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis, 120, 200-206. https://doi.org/10.1016/j.jaap.2016.05.006
Uzun, B. B., & Sarioğlu, N. (2009). Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology, 90(5), 705-716. https://doi.org/10.1016/j.fuproc.2009.01.012Get rights and content
van Loo, T. L. S., & Koppejan, J. (2008). Biomass ash characteristics and behaviour in combustion systems. Biomass and Bioenergy,
UPDATE, 4(4).
Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
Yin, Q., Ren, H., Wang, R., & Zhao, Z. (2018). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631, 895-903. https://doi.org/10.1016/j.scitotenv.2018.03.091
Book:
Boboulos, M. (2010). Biomass properties and fire prediction tools. Bookboon.
Francescato, V., Antonini, E., Bergomi, L. Z. (2008). Priručnik o gorivima iz drvne biomase. Regionalna energetska agencija Sjeverozapadne Hrvatske. Fuel price responses. Energy Policy, 103, 258-264.
Ok, Y.S., M.Uchimiya, S., X.Chang, S., Bolan, N. (2016.): Biochar: Production, Characterization, and Applications. CRC Press, 432. Chapter 9: Biochar Effects on Soil Fertility and Nutrient Cycling, Cai, Y., Chang, S.X., 252.-255
Roos, C. J. (2008). Biomass drying and dewatering for clean heat & power (1-35). Olympia, WA, USA: Northwest CHP Application Center.
Chapter in an edited book:
Rahman, M.S., Al-Saidi, G.S. (1995). Thermal Conductivity Prediction of Foods. In Rahman, M.S. (Eds.) Food Properties Handbook (2nd ed., pp. 623-648). Taylor & Francis Group, CRC Press.
Symposiums, Congresses:
Antonović, A., Krička, T., Jurišić, V., Bilandžija, N., Voća, N., Stanešić, J. (2016). Biochar quantification and its properties in relation to the raw material. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, 15-18.02.2016. Opatija, Croatia; 15-18.
Jurišić V., Krička T., Matin A., Bilandžija N., Antonović A., Voća N., & Torić T. (2016). Proizvodnja energije i proizvoda dodane vrijednosti pirolizom koštica trešnje i višnje. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, 15-18.02.2016. Opatija, Croatia; 475-480.
Stamenković, Z., Pavkov, I., Radojčin, M., Kešelj, K., Vakula, A., Novaković, T. (2019). Convective drying kinetics of strawberry pulp in a thin stagnant layer. Proceedings of Sixth Intenational Conference Sustainable Postharvest and Food Technologies - INOPTEP 2019. 07-12. april, 2019. Kladovo, Republic of Serbia; 94-99.
Software:
STASTICA SAS® 9.3 Software - SAS version 9.3 (USA)
ISO Standard References:
International Organization for Standardization. (2017). Solid biofuels — Sample preparation (EN ISO 14780:2017) https://www.iso.org/standard/66480.html
International Organization for Standardization. (2017). Determination of moisture content - Oven dry method -- Part 2: Total moisture -- Simplified method (EN ISO 18134-2:2017) Solid biofuels https://www.iso.org/standard/71536.html
International Organization for Standardization. (2015). Determination of ash content – EN ISO 18122:2015 Solid biofuels https://www.iso.org/standard/61515.html
International Organization for Standardization. (2023). Determination of volatile matter – EN ISO 18123:2023 Solid biofuels https://www.iso.org/standard/83192.html
International Organization for Standardization. (2017). Determination of calorific value (HRN EN ISO 18125:2017) Solid biofuels https://www.iso.org/standard/61517.html
International Organization for Standardization. (2015). Determination of minor elements (HRN EN ISO 16968:2015) Solid biofuels https://www.iso.org/standard/58067.html