EKSTRAKCIJA SPOREDNIH PROIZVODA PRERADE BILJNIH ČAJEVA POTPOMOGNUTA GASNOM PLAZMOM
Sažetak
Antioksidansi imaju važnu ulogu u sprečavanju oksidacije masnih kiselina prisutnih u prehrambenim proizvodima, čime značajno produžavaju njihov rok trajanja. Zbog nepovoljnog uticaja pojedinih sintetskih antioksidanasa na zdravlje ljudi, sve je češća upotreba antioksidanasa dobijenih iz prirodnih izvora. Antioksidansi se iz biljnih izvora izoluju ekstrakcijom. Tradicionalne metode ekstrakcije podrazumevaju upotrebu polarnih rastvarača, uz primenu visokih temperatura. Ovi procesi su često energetski nepovoljni, dugo traju i zahtevaju dodatne korake prečišćavanja, kako bi se uklonili toksični rastvarači. Izolovanje biološki aktivnih jedinjenja primenom ekstrakcije potpomognute gasnom netermalnom plazmom bi moglo da poveća održivost ovog procesa. Osim toga, kombinacijom zelenih rastvarača, poput vode, sa tretmanom plazmom, dobijanje prirodnih antioksidanasa bi bilo u skladu sa tzv. „hardl“ tehnologijom i principima cirkularne ekonomije, kojima se teži u prehrambenoj industriji. Predmet ovog rada je ispitivanje mogućnosti dobijanja prirodnih antioksidanasa kombinovanom ekstrakcijom nusproizvoda proizvodnje biljnih čajeva. Vodeni ekstrakti koprive, svilovine i kantariona tretirani su plazmom u različitim vremenskim intervalima. Analizirana je antioksidativna aktivnost dobijenih ekstrakata, kao i ukupni sadržaj fenola. Takođe, ispitivana je i mogućnost upotrebe ovih ekstrakata kao fermentacionog medijuma. Najveća antioksidativna aktivnost i najviši sadržaj ukupnih fenola ostvareni su u ekstraktima svilovine. Ove vrednosti su blago opadale sa povećanjem dužine tretmana plazmom, dok je rast bakterija bio poboljšan. Ekstrakti koprive su posedovali značajno manju antioksidativnu aktivnost i niži sadržaj ukupnih fenola od ekstrakata svilovine. Međutim, ovi ekstrakti su bili pogodniji za gajenje bakterija. Dodavanjem 25% MRS bujona u ekstrakte koprive, postignut je približno isti rast Ligilactobacillus salivarius kao u čistom MRS bujonu.
Reference
Akbarirad, H., Gohari Ardabili, A., Kazemeini, S. M., & Mousavi Khaneghah, A. (2016). An overview on some of important sources of natural antioxidants. International Food Research Journal, 23(3), 928–933.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Brewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Đukić-Vuković, A., Tylewicz, U., Mojović, L., & Gusbeth, C. (2017). Recent advances in pulsed electric field and non-thermal plasma treatments for food and biorefinery applications. Journal on Processing and Energy in Agriculture, 21(2), 61–65.
Đurović, S., Vujanović, M., Radojković, M., Filipović, J., Filipović, V., Gašić, U., Tešić, Ž., Mašković, P., & Zeković, Z. (2020). The functional food production: Application of stinging nettle leaves and its extracts in the baking of a bread. Food Chemistry, 312. https://doi.org/10.1016/j.foodchem.2019.126091
Garofulić, I. E., Malin, V., Repajić, M., Zorić, Z., Pedisić, S., Sterniša, M., Možina, S. S., & Dragović-Uzelac, V. (2021). Phenolic profile, antioxidant capacity and antimicrobial activity of nettle leaves extracts obtained by advanced extraction techniques. Molecules, 26(20). https://doi.org/10.3390/molecules26206153
Grbić, J., Đukić-Vuković, A., Mladenović, D., Lazović, S., & Mojović, L. (2022). Effect of non-thermal plasma on cellulose crystallinity and lignin content in corn stalks. Journal on Processing and Energy in Agriculture, 26(2), 52–56. https://doi.org/10.5937/jpea26-36871
Grbić, J., Mladenović, D., Pavlović, S., Lazović, S., Mojović, L., & Djukić-Vuković, A. (2023). Advanced oxidation processes in the treatment of corn stalks. Sustainable Chemistry and Pharmacy, 32, 100962. https://doi.org/10.1016/J.SCP.2022.100962
Hevesi, B. T., Houghton, P. J., Habtemariam, S., & Kéry, Á. (2009). Antioxidant and Antiinflammatory Effect of Epilobium parviflorum Schreb. Phytother. Res, 23, 719–724. https://doi.org/10.1002/ptr
Koch, A. L. (2014). Growth Measurement. Methods for General and Molecular Microbiology, 172–199. https://doi.org/10.1128/9781555817497.CH9
Liu, R., & Mabury, S. A. (2020). A review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science & Technology, 54(19), 11706–11719.
López-Hortas, L., Le Juge, C., Falqué, E., Domínguez, H., & Torres, M. D. (2020). Bioactive extracts from edible nettle leaves using microwave hydrodiffusion and gravity and distillation extraction techniques. Process Biochemistry, 94, 66–78. https://doi.org/10.1016/j.procbio.2020.04.012
Matan, N., Puangjinda, K., Phothisuwan, S., & Nisoa, M. (2015). Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control, 50, 291–296. https://doi.org/10.1016/j.foodcont.2014.09.005
Muhammad, A. I., Liao, X., Cullen, P. J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X., & Ding, T. (2018). Effects of Nonthermal Plasma Technology on Functional Food Components. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1379–1394.
Muzykiewicz, A., Florkowska, K., Nowak, A., Zielonka-Brzezicka, J., & Klimowicz, A. (2019). Antioxidant activity of St. John’s Wort extracts obtained with ultrasound-assisted extraction. Pomeranian Journal of Life Sciences, 64(4), 89–93. https://doi.org/10.21164/pomjlifesci.640
Oguz, I., Degirmenci, I., & Kafkas, E. (2019). Determination of the total phenolic and anthocyanin contents, as well as the total antioxidant capacity, of black wolfberry (Lycium ruthenicum) fruits. Journal on Processing and Energy in Agriculture, 23(4), 158–161.
Pogorzelska-Nowicka, E., Hanula, M. M., Brodowska-Trębacz, M., Górska-Horczyczak, E., Jankiewicz, U., Mazur, T., Marcinkowska-Lesiak, M., Półtorak, A., & Wierzbicka, A. (2021). The effect of cold plasma pretreatment on water-suspended herbs measured in the content of bioactive compounds, antioxidant activity, volatile compounds and microbial count of final extracts. Antioxidants, 10(11). https://doi.org/10.3390/antiox10111740
Pravilnik o kvalitetu čaja, biljnog čaja i njihovih proizvoda (Vol. 4). (2012). Službeni glasnik RS. https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2012/4/2 (in Serbian)
Ramalakshmi, K., Rao, L. J. M., Takano-Ishikawa, Y., & Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115(1), 79–85. https://doi.org/10.1016/J.FOODCHEM.2008.11.063
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Shah, M. A., Bosco, S. J. D., & Mir, S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98(1), 21–33.
Taghvaei, M., & Jafari, S. M. (2015). Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology, 52, 1272–1282.
Tahri, A., Yamani, S., Legssyer, A., Aziz, M., Mekhfi, H., Bnouham, M., & Ziyyat, A. (2000). Acute diuretic, natriuretic and hypotensive effects of a continuous perfusion of aqueous extract of Urtica dioica in the rat. Journal of Ethnopharmacology, 73((1-2)), 95–100.
Viana da Silva, M., Santos, M. R. C., Alves Silva, I. R., Macedo Viana, E. B., Dos Anjos, D. A., Santos, I. A., Barbosa de Lima, N. G., Wobeto, C., Jorge, N., & Lannes, S. C. D. S. (2022). Synthetic and Natural Antioxidants Used in the Oxidative Stability of Edible Oils: An Overview. Food Reviews International, 38(S1), 349–372.
Vlase, A. M., Toiu, A., Tomuță, I., Vlase, L., Muntean, D., Casian, T., Fizeșan, I., Nadăș, G. C., Novac, C. Ștefania, Tămaș, M., & Crișan, G. (2023). Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants, 12(1). https://doi.org/10.3390/antiox12010091
Yanishlieva-Maslarova, N., & Heinonen, I. M. (2001). Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food, practical applications, (pp. 210–266). England: Woodhead Publishing.
Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology , 54(3), 176–186.
Zaplotnik, R., Kregar, Z., Bišćan, M., Vesel, A., Cvelbar, U., Mozetič, M., & Milošević, S. (2014). Multiple vs. single harmonics AC-driven atmospheric plasma jet. EPL (Europhysics Letters), 106(2), 25001. https://doi.org/10.1209/0295-5075/106/25001
Zeković, Z., Cvetanović, A., Švarc-Gajić, J., Gorjanović, S., Sužnjević, D., Mašković, P., Savić, S., Radojković, M., & Đurović, S. (2017). Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Industrial Crops and Products, 108, 423–430. https://doi.org/10.1016/j.indcrop.2017.06.055