EFEKAT ŠELAK SMOLE NA OSOBINE ZEINSKOG FILMA

  • Danijela Šuput Tehnološki fakultet Novi Sad, Univerzitet u Novom Sadu
  • Senka Popović
  • Nevena Hromiš
  • Jovana Pantić
  • Biljana Ločar
  • Lato Pezo
Ključne reči: šelak smola, zein film, svojstva

Sažetak


Značaj biopolimernih materijala, u kontekstu redukcije otpada, zaostalog nakon upotrebe konvencionalne ambalaže, uz upotrebu obnovljivih sirovina za njihovo dobijanje opravdava intenzivna istraživanja prirodne, razgradive ambalaže. Zein je hidrofoban protein koji se nalazi u kukuruzu i u ovom radu sintetisani su i okarakterisani filmovi na bazi zeina. Velika mana biopolimernih filmova je njihova propustljivost vodene pare i gasova. Visoka hidrofobnost lipidnih komponenata u vidu voska, ulja, smola, koja ih čini nerastvorljivim u vodi, a rastvorljivim u tipičnim organskim rastvaračima, objašnjava zašto su voskovi najefikasnije prepreke za transfer vodene pare. Zbog toga je zeinskim filmovima dodata šelak smola. Šelak je dodat na dva načina: (1) laminacijom na postojeći suv zeinski film (L uzorci), (2) dodatkom šelak alkoholnog rastvora prilikom sinteze zeinskog filma u odnosu 50-50 postupkom razlivanja (M uzorci). Zeinski filmovi bez dodatka šelaka su označeni kao kontrolni uzorci. Svim grupama uzoraka ispitane su fizičko-hemijske (debljina, sadržaj vlage), mehaničke (zatezna jačina i izduženje pri kidanju) i barijerne karakteristike (propustljivost vodene pare). Dobijeni filmovi su transparentni, sjajni, svetlo žute (kontrola) do oker boje (uzorci sa dodatkom šelaka), fleksibilni, nelepljivi. Rezultati su pokazali značajno veće vrednosti izduženja pri kidanju kod uzoraka kojima je dodat šelak. Ove vrednosti su veče kod laminiranih uzoraka. Takođe, konstatovane su značajno manje vrednosti propustljivosti vodene pare 10,04 g/(m2·h) kod L uzoraka, 18.41 g/(m2·h) kod M uzoraka, u odnosu na kontrolni zeinski film (40.33 g/(m2·h)), što ujedno predstavlja i najveći doprinos ovog rada. Optimizacija postupka proizvodnje, ali i osobina dobijenih biopolimernih filmova direktno utiče na proširivanje pravca njihove primene.

Reference

Chitravathi, K., Chauhan, O.P., Raju, P.S. (2014). Postharvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings. Journal of Food Science and Technology, 92, 146–148. https://doi.org//10.1007/s13197-016-2309-6 


Du, Y., Wang, L., Mu, R., Wang, Y., Li, Y., Wu, D., Wu, C., Pang, J. (2019). Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. International Journal of Biological Macromolecules, 131, 36–42. https://doi.org//10.1016/j.ijbiomac.2019.02.142 


Escamilla-Garcia, M., Calderon-Dominguez, G., Chanona-Perez, J.J., Farrera-Rebollo, R.R., Andraca-Adame, J.A., Arzate-Vazquez, I., Mendez-Mendez, J.V., Moreno-Ruiz, L.A. (2013). Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. International Journal of Biological Macromolecules, 61, 196–203. https://doi.org/10.1016/j.ijbiomac.2013.06.051


Ghanbarzadeh, B., Oromiehi, A.R. (2008). Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43, 209–215. https://doi.org/10.1016/j.ijbiomac.2008.05.006


Ghoshal, S., Khan, M.A., Gul-E-Noor, F., Khan, R.A. (2009). Gamma radiation induced biodegradable shellac films treated by acrylic monomer and ethylene glycol. Journal of Macromolecular Science, Part A, 46, 975–982. https://doi.org//10.1080/10601320903158594 


Giteru, S.G., Azam Ali, M., Oey, I. (2021). Recent progress in understanding fundamental interactions and applications of zein. Food Hydrocolloids, 120, 106948. https://doi.org//10.1016/j.foodhyd.2021.106948 


Glusac, J., Fishman, Y. (2021). Enzymatic and chemical modification of zein for food application. Trends in Food Science & Technology, 112, 507–517. https://doi.org//10.1016/j.tifs.2021.04.024 


Ibrahim, S., Riahi, O., Said, S.M., Sabri, M.F.M., Rozali, S. (2019). Biopolymers From Crop Plants, Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11573-5


Jaski, A.C., Schmitz, F., Horta, R.P., Cadorin, L., da Silva, B.J.G., Andreaus, J., Paes, M.C.D., Riegel-Vidotti, I.C., Zimmermann, L.M. (2022). Zein - a plant-based material of growing importance: New perspectives for innovative uses. Industrial Crops & Products 186, 115250. https://doi.org//10.1016/j.indcrop.2022.115250 


Jo, W., Song, H., Song, N., Lee, J., Min, S., Song, K. (2014). Quality and microbial safety of ’Fuji’apples coated with carnauba-shellac wax containing lemongrass oil. LWT-Food Science and Technology, 55, 490–497. https://doi.org//doi.org/10.1016/j.lwt.2013.10.034 


Kasaai, M.R. (2018). Zein and zein -based nano-materials for food and nutrition applications: A review. Trends in Food Science & Technology 79 (2018) 184–197. https://doi.org/10.1016/j.tifs.2018.07.015


Mathew, S., Brahmakumar, M., Abraham, T. E. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch- chitosan blend films. Biopolymers, 82 (2), 176-187. https://doi.org/10.1002/bip.20480


Mohamed, S. A. A., El-Sakhawy, M., Nashy, E. L. S. H. A., & Othman, A. M. (2019). Novel natural composite films as packaging materials with enhanced properties. International Journal of Biological Macromolecules, 136, 774–784. https://doi.org/10.1016/j.ijbiomac.2019.06.130 


Reddy, N., Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology, 29, 490–498. https://doi.org//10.1016/j.tibtech.2011.05.003 


Soradech, S., Limatvapirat, S., Luangtana-anan, M. (2013). Stability enhancement of shellac by formation of composite film: Effect of gelatin and plasticizers. Journal of Food Engineering, 116, 572–580. https://doi.org//10.1016/j.jfoodeng.2012.12.035.


Soradech, S., Nunthanid, J., Limmatvapirat, S., Luangtana-anan, M. (2012). An approach for the enhancement of the mechanical properties and film coating efficiency of shellac by the formation of composite films based on shellac and gelatin. Journal of Food Engineering, 108, 94–102. https://doi.org/10.1016/j.jfoodeng.2011.07.019


Srivastava, S., Thombare, N. (2017). Safety assessment of shellac as food additive through long term toxicity study. Trends in Bioscience, 10, 733–740.


Stummer, S., Salar-Behzadi, S., Unger, F.M., Oelzant, S., Penning, M., Viernstein, H. (2010). Application of shellac for the development of probiotic formulations. Food Research International, 43, 1312–1320. https://doi.org//doi.org/10.1016/j.foodres.2010.03.017 


Šuput, D., Pezo, L., Lončar, B., Popović, S., Tepić Horecki, A., Daničić, T., Cvetković, D., Ranitović, A., Hromiš, N. and Ugarković, J. (2023). The Influence of Biopolymer Coating Based on Pumpkin Oil Cake Activated with Mentha piperita Essential Oil on the Quality and Shelf-Life of Grape. Coatings, 13(2), 299. https://doi.org/10.3390/coatings13020299


Takahashi, K., Ogata, A., Yang, W.H., Hattori, M. (2002). Increased hydrophobicity of carboxymethyl starch film by conjugation with zein, Bioscience, Biotechnology Biochemistry, 66, 1276–1280. https://doi.org/10.1271/bbb.66.1276


Thombare, N., Kumar, S., Kumari, U., Sakare, P., Yogi, R.K., Prasad, N., Sharma, K.K. (2022). Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. International Journal of Biological Macromolecules, 215, 203–223. https://doi.org//10.1016/j.ijbiomac.2022.06.090  


Weissmueller, N.T., Lu, H.D., Hurley, A., Prud'homme, R.K. (2016). Nanocarriers from GRAS zein proteins to encapsulate hydrophobic actives. Biomacromolecules, 17, 3828–3837. https://doi.org//10.1021/acs.biomac.6b01440 


Yong Cho, S., Park, J.-W., Rhee, C. (2002). Properties of laminated films from whey powder and sodium caseinate mixtures and zein layers. LWT Food Science and Technology, 35, 135–139. https://doi.org/10.1006/fstl.2001.0826


Yong, Z., Lili, C., Xiaoxia, C., Heng, Z., Nianqiu, S., Chunlei, L., Yan, C., Wei, K. (2015). Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. Journal of Controlled Release 206, 206–219. https://doi.org//10.1016/j.jconrel.2015.03.030 


Yuan, Y., He, N., Xue, Q., Guo, Q., Dong, L., Haruna, M.H., Zhang, X., Li, B., Li, L. (2021). Shellac: A promising natural polymer in the food industry. Trends in Food Science & Technology, 109, 139–153. https://doi.org//10.1016/j.tifs.2021.01.031 


Zhang, Y., Li, T., Zhang, H., Zhang, H., Chi, Y., Zhao, X., et al. (2020). Blending with shellac to improve water resistance of soybean protein isolate film. Journal of Food Process Engineering, 43, 13515. https://doi.org/10.1111/jfpe.13515 

Objavljeno
2023/12/04
Rubrika
Članci