PROCENA FUNDAMENTALNIH FAKTORA KOJI UTIČU NA KARAKTERISTIKE MATERIJALA NA BAZI MICELIJUMA: PREGLED

  • Maja Karaman University of Novi Sad, Faculty of Sciences
Ključne reči: kompozitinabazimicelijuma; biomaterijali; gljive.

Sažetak


Materijali na bazi micelijuma (MBM) nastaju gajenjem vegetativnog dela gljiva koje formiraju gljive – grupa Dikarya iz razdela Basidiomycota i Ascomycota, na različitim organskim supstratima, uglavnom zbog posedovanja važnih karakteristika micelijuma: prisustvo sept i ianastomoza. Funkcija ovih kompozita može se dodatno podesiti kontrolom sledećih faktora: vrsta gljive, uslovi rasta i metode obrade finalnog proizvoda kako bi se ispunili specifični mehanički zahtevi u njihovoj kasnijoj primeni. Materijal nastao nakon pune kolonizacije supstrata, treba da se izloži suvom zagrevanju kako bi se uklonio sadržaj vlage i deaktivirao micelijum, dajući nam lagani i biorazgradivi material sa velikim potencijalom da zameni fosilne i sintetičke materijale npr. poliuretan i polistiren.Njihova niska emisija ugljendioksida, niska energija i troškovi obrade, ali i biorazgradivost, niska toplotna provodljivost, visoka akustična apsorpcija i kvalitet i zaštite od požara jesu neke od glavnih karakteristika koje su podstakle upotrebu kompozita na bazi micelijuma u građevinarstvu i građevinskom sektoru, sa posebnom primenom u oblogama, izolacijama i materijalima za nameštaj. Međutim, micelijumski proizvodi su prilično novi i podaci o njihoviom testiranju su veoma oskudni. Zbog toga postoji potreba  za standardizovanim svojstvima materijala: mehaničkim, univerzalnim zahtevima za ispitivanje i objavljenim standardima (ISO, ASTM) kako bi se osiguralo da se program kvalifikacije i testiranja mogu razviti za podršku proizvodnji i upotrebi kompozita na bazi micelijuma (MBC).

 

Reference

Acevedo, M.D.; Urena, L.J.B.; García, F.J.C.; Ferre, F.C.F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 22, 00902.
Alabi, O.A., Ologbonjaye, K.I., Alalade, O.E., Awosolu, O. (2019). Public and environmental health effects of plastic waste disposal: a review, J. Toxicol. Risk Assessment 5 https://doi.org/10.23937/2572-4061.1510021.
Al Afif, R., Bikić, S., Radojčin, M. (2023). Bioenergy conversion technologies: A review and case study, Journal on Processing and Energy in Agriculture, 27(1), 30 - 38, ISSN 1821-4487, DOI:10.5937/jpea27-43884


Appels, F. V. Camere,W., Montalti, S., Karana, M., Jansen, E., Dijksterhuis, B., et al., (2019). Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites. Mater. Des. 161, 64–71. doi:10.1016/j.matdes.2018.11.027
Arifin, Y. H., and Yusuf, Y. (2013). Mycelium Fibers as New Resource for Environmental Sustainability. in Proced. Eng. 53, 504–508. doi:10.1016/ j.proeng.2013.02.065
Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. (2018). Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 9, 145.
Attias, N., Danai, O., Tarazi, E., Pereman, I., Grobman, Y.J. (2019). Implementing bio-design tools to develop mycelium-based products, Des. J. 22 (1) 1647–1657, https://doi.org/10.1080/14606925.2019.1594997
Bouajila, J., Limare, A., Joly, C., Dole, P. ( 2005) Lignin Plasticization to Improve Binderless Fiberboard Mechanical Properties. Polym. Eng. Sci., 45, 809–816.
Bikić, S., Radojčin, M., Pavkov, I., Bukurov, M., Despotović, B., Stamenković, Z., Oluški, N., Al Afif, R. (2022). Thermophysical dispersion properties of agricultural biomass particles in ethylene glycol, International Journal of Thermofluids, Volume 16(2022), https://doi.org/10.1016/j.ijft.2022.100226
Deacon, J. (2005). Fungal Biology. 4th Edition, Blackwell-Wiley: Oxford, UK, doi:10.1002/9781118685068
Donner, M., Gohier, R., de Vries, H. (2020). A new circular business model typology for creating value from agro-waste. Sci. Total Environ. 716, 137065.
E. Elsacker, S. Vandelook, A.V. Wylicka, J. Ruytinx, L. De Laeta, E. Peeters, (2020). A comprehensive framework for the production of mycelium-based lignocellulosic composites, Sci. Total Environ., 1–17
E. Elsacker, S. Vandelook, J. Brancart, E. Peeters, L. De Laet, (2019). Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates, PLoS One 14, (7).
Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., et al. (2019). Physico-mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 11, 281. doi:10.3390/su11010281
Ghazvinian, A. P., Farrokhsiar, F. Vieira, Pecchia, J., Gursoy, B., (2020). Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength, Mater. Stud. Innovat. 2 505–514.
Haneef, M., Ceseracciu, L., Canale, C. et al. (2017). Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci Rep 7, 41292https://doi.org/10.1038/srep41292
Hawksworth, D.L., Luecking R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. MicrobiolSpectr. 5(4). FUNK-0052-2016.
Hyde, K.D. (2022). The numbers of fungi. Fungal Diversity114, 1 https://doi.org/10.1007/s13225-022-00507-y

Hoa, H. T., & Wang, C. L. (2015). The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(1), 14–23. https://doi.org/10.5941/MYCO.2015.43.1.14
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., and Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage. 182, 351–366. doi:10.1016/j.jenvman.2016.07.090
Islam, M.R., Tudryn, G., Bucinell, Schadler, R. L., Picu, R.C. (2017). Morphology and mechanics of fungal mycelium, Sci. Rep. 7 13070, https://doi.org/ 10.1038/s41598-018- 20637-1.
Javadian, A., Le Ferrand, H., Hebel, D.E. Saeidi, N. (2020). Application of mycelium-bound composite materials in construction industry: A short review, SOJ Mater. Sci. Eng. 7 (2) 1–9.
Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., and Tudryn, G. (2017). Manufacturing of Biocomposite sandwich Structures Using Mycelium-bound Cores and Preforms. J. Manufacturing Process. 28, 50–59. doi:10.1016/j.jmapro.2017.04.029
Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., and Li, B. (2019). Bioresin Infused Then Cured Mycelium-Based sandwich-structure Biocomposites: Resin Transfer Molding (RTM) Process, Flexural Properties, and Simulation. J. Clean. Prod. 207, 123–135. doi:10.1016/j.jclepro.2018.09.255
Jones, M., Huynh, T., John, S. (2018) Inherent species characteristic influence and growth performance assessment for mycelium composite applications, Adv. Mater. Lett. 9 (1) 71–80.
Jones, M., Mautner, A. Luenco, S., A. Bismarck, John, S. (2019). Engineered mycelium composite construction materials from fungal biorefineries: a critical review, Mater. Des. 187 (1–33), 108397, https://doi.org/10.1016/j. matdes.2019.108397.
Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., (2020). Engineered mycelium composite construction materials from fungal biorefineries: a critical review, Mater. Des. 187 (1–33), 108397, https://doi.org/10.1016/j. matdes.2019.108397.
Lelivelt, R. J. J., Lindner, G., Teuffel, P., Lamers, H. (2015). The production process and compressive strength of mycelium-based materials. In First International Conference on Bio-based Building Materials. 22-25 June 2015, Clermont-Ferrand, France (pp. 1-6).
Li K., Jia J., Wu N., and Xu Q. (2022). Recent advances in the construction of biocomposites based on fungal mycelia. Front. Bioeng. Biotechnol. 10:1067869. doi: 10.3389/fbioe.2022.1067869
Liu R., Long L., Sheng Y., Xu J., Qiu H., Li X., Wang Y., Wu H., (2019) Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties, Industrial Crops and Products, Volume 141, 111732, ISSN 0926-6690, doi.org/10.1016/j.indcrop.2019.111732.
Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G. (2021). Synthesis and applications of fungal mycelium-based advanced functional materials, J. Bioresour. Bioprod. 6 1–10, https://doi.org/10.1016/j. jobab.2021.01.001.
Ministry of Environmental Protection, 2022, The Waste Management Program in the Republic of Serbia2022 – 2031, accessed January 5th 2024,
.
Pavkov, I., Radojčin, M., Stamenković, Z., Bikić, S., Tomić, M., Bukurov, M., Despotović, B. (2022). Hydrothermal Carbonization of Agriculture Biomass: Characterization of Hydrochar for Energy Production, Solid Fuel Chemistry, 56(3), 225-235, ISSN 0361-5219, DOI: 10.3103/S0361521922030077

Pelletier, M.G., Holt, G.A., Wanjura, J.D., Greetham, L., McIntyre, G., Bayer, E., Kaplan-Bie, J. (2019). Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative, Ind. Crop. Prod. 139, 111533, https://doi. org/10.1016/j.indcrop.2019.111533.
Radojčin, M., Bikić, S., Pavkov, I., Bukurov, M., Despotović, B., Stamenković, Z. and Oluški, N. (2022). Experimental investigation on thermophysical properties of iobiofluids, Advances in Mechanical Engineering, Advanced Practices in Aerospace and Energy Engineering, 14(1), ISSN 1687 – 8132, Online ISSN: 1687-8140, https://doi.org/10.1177/16878140221075457

Sydor, M., Cofta, G., Doczekalska, B., Bonenberg, A. (2022). Fungi in mycelium-based composites: usage and recommendations, Materials (Basel) 15, https://doi. org/10.3390/ma15186283.
Thoemen, Heiko & Humphrey, Philip. (2005). Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer. Holz alsRoh- und Werkstoff. 64. 1-10. 10.1007/s00107-005-0027-2.
Vandelook, S., Elsacker, E., Wylick, A.V., De Laet, L., Peeters, E. (2021). Current state and future prospects of pure mycelium materials, Fungal Biol. Biotechnol. 8 (20) 1–10, https://doi.org/10.1186/s40694-021- 00128-1.
Velasco, P. M., Ortiz, M. P. M., Giro, M. A. M., Castelló, M. C. J., and Velasco, L. M. (2014). Development of Better Insulation Bricks by Adding Mushroom Compost Wastes. Energy and Buildings 80, 17–22. doi:10.1016/ j.enbuild.2014.05.005
Wang, Y., Liu, Y., Li, J., Chen, Y., Liu, S., and Zhong, C. (2022). Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr. Opin. Chem. Biol. 70, 102188. doi:10.1016/j.cbpa.2022.102188
Yang, T., Hu, L., Xiong, X., Petrů, M., Noman, M.T., Mishra, R. et al., (2020). Sound Absorption Properties of Natural Fibers: A Review, Sustainability 12 (20) 8477.
Yang L., Park D., and Qin Z., (2021) Material Function of Mycelium-Based Bio-Composite: A Review. Front. Mater. 8:737377. doi: 10.3389/fmats.2021.737377
Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G., and Bajwa, D. S. (2016). Evaluation of Physico-Mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers. Appl. Eng. Agric. 32, 931–938. doi:10.13031/aea.32.11830
Žižić, M., Atlagić, K., Karaman, M., Živić M, Stanić M, Maksimović, V., Zakrzewska, J. (2024) Uptake of vanadium and its intracellular metabolism by Coprinellus truncorum mycelial biomass, Journal of Trace Elements in Medicine and Biology, 83, 127381, doi: 10.1016/j.jtemb.2024.127381
Krsmanović, N., Rašeta, M., Mišković, J., Bekvalac, K., Bogavac, M., Karaman, M., Isikhuemhen, O. S. (2023) Effects of UV stress in promoting antioxidant activities in fungal species Тrametes versicolor (L.) Lloyd and Flammulina velutipes (Curtis) Singer. Antioxidants, 12(2), 302. doi : 10.3390/antiox12020302
Karaman, M., Krsmanović, N., Mišković, J. Fungal based biomaterials. The 3rd Congress of biologists of Serbia, 22-25. September 2022b, Zlatibor, Serbia.
Karaman, M., Čapelja, E., Rašeta, M., Rakić, M. (2022a) Diversity, chemistry, and environmental contamination of wild growing medicinal mushroom species as sources of biologically active substances (Antioxidants, Anti-Diabetics, and AChE Inhibitors). In: Biology, Cultivation and Applications of Mushrooms; Arya, A., Rusevska, K., Eds.; Springer: Berlin/Heidelberg, Germany, 8: 203–257. doi: 10.1007/978-981-16-6257-7_8, Hardcover ISBN 978-981-16-6256-0, Softcover ISBN 978-981- 16-6259-1, eBook ISBN 978-981-16-6257-7
Mišković, J., Karaman, M., Rašeta, M., Krsmanović, N., Berežni, S., Jakovljević, D., Piattoni, F., Zambonelli, A., Gargano, M.L., Venturella, G. (2021) Comparison of two Schizophyllum commune strains in production of acetylcholinesterase inhibitors and antioxidants from submerged cultivation Journal of Fungi. 7:115.DOI: doi:10.3390/jof7020115
Karaman M.A., Novaković M.S., Matavuly M.N. (2012): Fundamental Fungal Strategies in Restoration of Natural Environment. In: Fungi: Types, Environmental Impact and Role in Disease. Editors: Paz Silva A. and Sol M., Nova Science Publishers, Inc., ISBN: 978-1-61942-671-9. Chapter X, pp: 167-214.
Objavljeno
2024/04/11
Rubrika
Članci