Antifungal activity of chitosan against Alternaria alternata and Colletotrichum gloeosporioides

  • Svetlana Živković Institute for Plant Protection and Environment, T. Drajzera 9, 11040 Belgrade
  • Miloš Stevanović Institute for Plant Protection and Environment, T. Drajzera 9, 11040 Belgrade
  • Sanja Đurović Institute for Plant Protection and Environment, T. Drajzera 9, 11040 Belgrade
  • Danijela Ristić Institute for Plant Protection and Environment, T. Drajzera 9, 11040 Belgrade
  • Stefan Stošić Institute for Plant Protection and Environment, T. Drajzera 9, 11040 Belgrade
Keywords: Chitosan, Antifungal activity, Postharvest pathogens, Apple fruits,

Abstract


Chitosan and its derivatives have been reported as a promising alternative for control of
postharvest fungal pathogens. The objective of this study was to evaluate in vitro and in situ antifungal activity of chitosan against Alternaria alternata and Colletotrichum gloeosporioides isolated from decayed apple fruits. The fungi were tested in vitro using PDA medium with three concentrations of chitosan (1, 2 and 3 mg/ml). Fungal growth of the test pathogens was significantly affected by all chitosan doses (P<0.05) after 7 days of incubation at 25°C. Water solution of 3 mg/ml of chitosan inhibited completely the conidial germination of A. alternata and C. gloeosporioides after 18 h incubation at 25°C. The results obtained from biocontrol assay indicate that the inhibition of postharvest decay of A. alternata and C. gloeosporioides was significantly influenced by chitosan concentrations. Disease incidence in chitosan-treated fruit after 7 days incubation at 25°C was significantly lower than in the positive control for both fungi tested (P<0.05). A. alternata and C. gloeosporioides used in this study were progressively inhibited in vitro and in situ with increasing concentrations of chitosan from 1 to 3 mg/ml.

References

Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021

Al-Hetar, M.Y., Zainal Abidin, M.A., Sariah, M., &. Wong, M.Y (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science, 120(4), 2434-2439.

Badawy, M. E., Rabea, E. I., Steurbaut, W., Rogge, T. M., Stevens, C. V., Smagghe, G. & Höfte, M. (2005). Fungicidal activity of some O-acyl chitosan derivatives against grey mould Botrytis cinerea and rice leaf blast Pyricularia grisea. Communications in Agricultural and Applied Biological Sciences,70(3), 215-218.

Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E., & Wilson, C.L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22(9), 1087-1092. doi:10.1016/S0261-2194(03)00117-0

Bhaskara, M. V. R., Arul, J., Ait Barka, E., Richard, C., Angers, P., & Castaigne, F. (1998). Effect of chitosan on growth and toxin production by A. alternata f. sp. lycopersici. Biocontrol Science and Technology, 8(1), 33-43.

Benhamou, N., & Theriault, G. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology, 41(1), 33-52.

Choi, B., Do-Hyun, J., Anower Mostafa, A.K.M., Shamsul Islam, S.M., & Seonghyang, S. (2016). Chitosan as an immunomodulating adjuvant on t-cells and antigenpresenting cells in herpes simplex virus type 1 infection. Mediators of Inflammation, article ID 4374375. doi: http://dx.doi.org/10.1155/2016/4374375

Eckert, J.W., & Ogawa, J.M., (1988). The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annual Review of Phytopathology, 26, 433-469.

El Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016-1018.

Hassan, O., & Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology, 11 (2), 53-70. doi: 10.3923/ajppaj.2017.53.70

Hernandez-Lauzardo, A.N., Velazquez-del Valle, M.G., Veranza-Castelan, L., Melo-Giorgana, G.E., & Guerra-Sanchez, M.G. (2010). Effect of chitosan on three isolates of Rhizopus stolonifer obtained from peach, papaya and tomato. Fruits, 65, 245-253. doi: 10.1051/fruits/2010020

Holmes, G.J., & Eckert, J.W., (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89(9), 716-721. doi: 10.1094/phyto.1999.89.9.716

Janisiewicz, W.J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi: 10.1146/annurev.phyto.40.120401.130158

Jianglian, D., & Shaoying, Z. (2013). Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review. Journal of Food Processing and Technology, 4(5), 227. doi:10.4172/2157-7110.1000227

Jitareerat, P., Paumchai, S., Kanlayanarat, S., & Sangchote, S. (2007). Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit. New Zealand Journal of Crop and Horticultural Science, 35(2), 211-218.

Kauss, H., Waldrnann, T., Jeblick, W, Euler, G., Ranjeva, R., & Domard, A. (1989). Ca 2+ is an important but not the only signal in callose synthesis induced by chitosan, saponins and polyene antibiotics. In: B.J.J., Lugtenberg (ed.), Signal molecules in plants and plantmicrobe interactions (pp 107-116). Berlin, Germany: Springer Vertag.

Kumar, P., Sethi, S., Sharma, R.R., Srivastav, M., & Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulture, 226, 104-109.

Lee, C.G., Koo, J.C., & Park, J.K. (2016). Antifungal effect of chitosan as Ca2+ channel blocker. Plant Pathology Journal, 32(3), 242-250.

Liu, J., Tian, S.P., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300-306. https://doi.org/10.1016/j.postharvbio.2006.12.019

Manssouri, M., Znini, M., El Harrak, A., & Majidi, L. (2016). Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus Coss. & Dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. Journal of Applied Pharmaceutical Science, 6(5), 131-136. doi: 10.7324/JAPS.2016.60520

Meng, X., Yang, L., Kennedy, J.F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81, 70-75. doi:10.1016/j.carbpol.2010.01.057

Munhuweyi, K., Lennox, C.L., Meitz-Hopkins, J.C., Caleb, O.J., Sigge, G.O., & Opara, U.L. (2016). In vitro effects of crab shell chitosan against mycelial growth of Botrytis sp., Penicillium sp. and Pilidiella granati. Acta Horticticulture, 1144, 403-408. doi: 10.17660/ActaHortic.2016.1144.60

Munoz, Z., Moret, A., & Garces, S. (2009). Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Protection, 28(1), 36-40. doi: 10.1016/j.cropro.2008.08.015

Notsu, S., Saito, N., Kosaki, H., Inui, H., & Hirano, S. (1994). Stimulation of phenylalanine ammonia-lyase and lignification in rise callus treated with chitin, chitosan, and their derivatives. Bioscience, Biotechnology and Biochemistry, 58(3), 552-553. doi: https://doi.org/10.1271/bbb.58.552

Oliveira Junior, E.N., El Gueddari, E.N., Moerschbacher, B.M., & Franco, T.T. (2012). Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Brazilian Journal of Microbiology, 43(2), 800-809. doi: 10.1590/s1517-83822012000200046

Reglinski, T., Elmera , P.A.G., Taylora , J.T., Woodb, P.N., & Hoytea, S.M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59(5), 882-890. doi: 10.1111/j.1365-3059.2010.02312.x

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi: https://doi.org/10.1016/j.progpolymsci.2006.06.001

Romanazzi, G., Nigro, F., & Ippolito, A. (2001). Chitosan in the control of postharvest decay of some Mediterranean fruit. In: Muzzarelli, R.A.A. (Ed.), Chitin Enzymology (pp 141-146). Naples, Italy: Atec.

Tayel, A.A., Moussa, S., el-Tras, W.F., Knittel, D., Opwis, K., & Schollmeyer, E. (2010). Anticandidal action of fungal chitosan against Candida albicans. International Journal of Biological Macromolecules, 47(4), 454-457. doi: 10.1016/j.ijbiomac.2010.06.011

Wang, L., Wu H., Qin, G., & Meng, X., (2013). Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control, 41, 56-62.

Wojdyła, A. T. (2004). Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences, 69(4), 705-715.

Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35(2), 569-588. doi 10.1007/s13593-014-0252-3

Zheng, F., Zheng, W., Li, L., & Pan, S. (2017). Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food Bioprocess Technology 10, 1937. doi: https://doi.org/10.1007/s11947-017-1957-5

Published
2018/12/29
Section
Original Scientific Paper