Antifungalna aktivnost hitosana prema Alternaria alternata i Colletotrichum gloeosporoides
Sažetak
Istraživanja pokazuju da su hitosan i njegovi derivati dobra alternativa u kontroli skladišnih fitopatogenih gljiva. Cilj ovog rada bio je da ispita antifungalnu aktivnost hitosana prema Alternaria alternata i Colletotrichum gloeosporoides, izolovanih sa inficiranih plodova jabuke, u in vitro i in situ uslovima. Rast gljiva je testiran in vitro koristeći PDA podlogu sa različitim koncentracijama hitosana (1, 2 i 3 mg/ml). Porast oba patogena je bio značajno smanjen (P<0.05) u svim koncentracijama hitosana nakon 7 dana inkubacije na 25°C. Vodeni rastvor hitosana koncentracije 3 mg/ml je u potpunosti inhibirao klijanje konidija A. alternata i C. gloeosporoides nakon inkubacije od 18 sati na temperaturi od 25°C. Rezultati ogleda in situ ukazuju da inhibicija propadanja plodova inficiranih sa A. alternata i C. gloeosporoides zavisi od koncentracije rastvora hitosana. Pojava bolesti na plodovima jabuka tretiranih rastvorom hitosana nakon 7 dana inkubacije na 25°C bila je značajno smanjena za obe vrste gljiva (P<0.05) u odnosu na pozitivnu kontrolu. Rast A. alternata i C. gloeosporoides je bio progresivno inhibiran in vitro i in situ sa povećanjem koncentracije rastvora hitosana, od 1 do 3 mg/ml.
Reference
Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021
Al-Hetar, M.Y., Zainal Abidin, M.A., Sariah, M., &. Wong, M.Y (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science, 120(4), 2434-2439.
Badawy, M. E., Rabea, E. I., Steurbaut, W., Rogge, T. M., Stevens, C. V., Smagghe, G. & Höfte, M. (2005). Fungicidal activity of some O-acyl chitosan derivatives against grey mould Botrytis cinerea and rice leaf blast Pyricularia grisea. Communications in Agricultural and Applied Biological Sciences,70(3), 215-218.
Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E., & Wilson, C.L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22(9), 1087-1092. doi:10.1016/S0261-2194(03)00117-0
Bhaskara, M. V. R., Arul, J., Ait Barka, E., Richard, C., Angers, P., & Castaigne, F. (1998). Effect of chitosan on growth and toxin production by A. alternata f. sp. lycopersici. Biocontrol Science and Technology, 8(1), 33-43.
Benhamou, N., & Theriault, G. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology, 41(1), 33-52.
Choi, B., Do-Hyun, J., Anower Mostafa, A.K.M., Shamsul Islam, S.M., & Seonghyang, S. (2016). Chitosan as an immunomodulating adjuvant on t-cells and antigenpresenting cells in herpes simplex virus type 1 infection. Mediators of Inflammation, article ID 4374375. doi: http://dx.doi.org/10.1155/2016/4374375
Eckert, J.W., & Ogawa, J.M., (1988). The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annual Review of Phytopathology, 26, 433-469.
El Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016-1018.
Hassan, O., & Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology, 11 (2), 53-70. doi: 10.3923/ajppaj.2017.53.70
Hernandez-Lauzardo, A.N., Velazquez-del Valle, M.G., Veranza-Castelan, L., Melo-Giorgana, G.E., & Guerra-Sanchez, M.G. (2010). Effect of chitosan on three isolates of Rhizopus stolonifer obtained from peach, papaya and tomato. Fruits, 65, 245-253. doi: 10.1051/fruits/2010020
Holmes, G.J., & Eckert, J.W., (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89(9), 716-721. doi: 10.1094/phyto.1999.89.9.716
Janisiewicz, W.J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi: 10.1146/annurev.phyto.40.120401.130158
Jianglian, D., & Shaoying, Z. (2013). Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review. Journal of Food Processing and Technology, 4(5), 227. doi:10.4172/2157-7110.1000227
Jitareerat, P., Paumchai, S., Kanlayanarat, S., & Sangchote, S. (2007). Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit. New Zealand Journal of Crop and Horticultural Science, 35(2), 211-218.
Kauss, H., Waldrnann, T., Jeblick, W, Euler, G., Ranjeva, R., & Domard, A. (1989). Ca 2+ is an important but not the only signal in callose synthesis induced by chitosan, saponins and polyene antibiotics. In: B.J.J., Lugtenberg (ed.), Signal molecules in plants and plantmicrobe interactions (pp 107-116). Berlin, Germany: Springer Vertag.
Kumar, P., Sethi, S., Sharma, R.R., Srivastav, M., & Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulture, 226, 104-109.
Lee, C.G., Koo, J.C., & Park, J.K. (2016). Antifungal effect of chitosan as Ca2+ channel blocker. Plant Pathology Journal, 32(3), 242-250.
Liu, J., Tian, S.P., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300-306. https://doi.org/10.1016/j.postharvbio.2006.12.019
Manssouri, M., Znini, M., El Harrak, A., & Majidi, L. (2016). Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus Coss. & Dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. Journal of Applied Pharmaceutical Science, 6(5), 131-136. doi: 10.7324/JAPS.2016.60520
Meng, X., Yang, L., Kennedy, J.F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81, 70-75. doi:10.1016/j.carbpol.2010.01.057
Munhuweyi, K., Lennox, C.L., Meitz-Hopkins, J.C., Caleb, O.J., Sigge, G.O., & Opara, U.L. (2016). In vitro effects of crab shell chitosan against mycelial growth of Botrytis sp., Penicillium sp. and Pilidiella granati. Acta Horticticulture, 1144, 403-408. doi: 10.17660/ActaHortic.2016.1144.60
Munoz, Z., Moret, A., & Garces, S. (2009). Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Protection, 28(1), 36-40. doi: 10.1016/j.cropro.2008.08.015
Notsu, S., Saito, N., Kosaki, H., Inui, H., & Hirano, S. (1994). Stimulation of phenylalanine ammonia-lyase and lignification in rise callus treated with chitin, chitosan, and their derivatives. Bioscience, Biotechnology and Biochemistry, 58(3), 552-553. doi: https://doi.org/10.1271/bbb.58.552
Oliveira Junior, E.N., El Gueddari, E.N., Moerschbacher, B.M., & Franco, T.T. (2012). Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Brazilian Journal of Microbiology, 43(2), 800-809. doi: 10.1590/s1517-83822012000200046
Reglinski, T., Elmera , P.A.G., Taylora , J.T., Woodb, P.N., & Hoytea, S.M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59(5), 882-890. doi: 10.1111/j.1365-3059.2010.02312.x
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi: https://doi.org/10.1016/j.progpolymsci.2006.06.001
Romanazzi, G., Nigro, F., & Ippolito, A. (2001). Chitosan in the control of postharvest decay of some Mediterranean fruit. In: Muzzarelli, R.A.A. (Ed.), Chitin Enzymology (pp 141-146). Naples, Italy: Atec.
Tayel, A.A., Moussa, S., el-Tras, W.F., Knittel, D., Opwis, K., & Schollmeyer, E. (2010). Anticandidal action of fungal chitosan against Candida albicans. International Journal of Biological Macromolecules, 47(4), 454-457. doi: 10.1016/j.ijbiomac.2010.06.011
Wang, L., Wu H., Qin, G., & Meng, X., (2013). Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control, 41, 56-62.
Wojdyła, A. T. (2004). Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences, 69(4), 705-715.
Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35(2), 569-588. doi 10.1007/s13593-014-0252-3
Zheng, F., Zheng, W., Li, L., & Pan, S. (2017). Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food Bioprocess Technology 10, 1937. doi: https://doi.org/10.1007/s11947-017-1957-5
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).
