The effects of medium nutritional profile on Bacillus sp. Par 3 plant-growth promoting and biocontrol activity against Botrytis cinerea

  • Tatjana Dujković University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad
  • Ivana Pajčin University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
  • Vanja Vlajkov University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
  • Olja Šovljanski University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
  • Siniša Markov University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
  • Marta Loc University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21 000 Novi Sad, Serbia
  • Mila Grahovac University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21 000 Novi Sad, Serbia
  • Jovana Grahovac University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
Keywords: Bacillus subtilis, Botrytis cinerea, cucumber, nutrient medium optimization, plant growth promotion, antimicrobial activity

Abstract


Substantial agricultural losses resulting from plant diseases caused by different plant pathogens are one of the worldwide challenges today. Among these, Botrytis cinerea, responsible for gray mold disease, stands out for its capacity to devastate significant quantities of diverse valuable crops. Utilization of biocontrol agents for suppressing phytopathogens has become imperative, and bacteria from the genus Bacillus hold an immense potential due to their rapid replication rate, resistance to adverse environmental conditions, enhanced effectiveness in promoting plant growth and broad-spectrum activity. The objective of this study was to determine the best sources of carbon, nitrogen and phosphorus in cultivation media with the aim of maximizing both antimicrobial activity against B. cinerea and plant growth-promoting (PGP) potential during the early stages of cucumber plant development, exhibited by Bacillus sp. isolate Par 3. Antimicrobial activity was tested using the well diffusion method. The influence of Bacillus sp. isolate Par 3 on plant germination was tested on cucumber seeds. The largest inhibition zones were achieved in two cases, with 1) sucrose as carbon source, ammonium nitrate as nitrogen source, and diammonium hydrogen phosphate as phosphorus source and 2) glycerol as carbon source, ammonium nitrate as nitrogen source and dipotassium hydrogen phosphate as phosphorus source. Seeds treated with a culture liquid of Bacillus sp. isolate Par 3 using the optimized medium exhibited the best results in terms of cucumber germination percentage (100%), root length (53.09 mm) and shoot length (13.26 mm). Bacillus sp. Par 3 isolate was identified as Bacillus subtilis using 16S rRNA gene sequencing. The results of this study underscore the significance of media optimization for the production of biocontrol agents, taking into account both antimicrobial efficacy and PGP characteristics.

References

Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., Al-Makhmari, H. S., & Al-Sulaimani, H. S. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation, 81, 141-146. https://doi.org/10.1016/j.ibiod.2012.01.006

Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., ... Brader, G. (2016). Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environmental Microbiology, 18(8), 2634-2645. https://doi.org/10.1111/1462-2920.13405

Bu, S., Munir, S., He, P., Li, Y., Wu, Y., Li, X., ... He, Y. (2021). Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biological Control, 157, 104568. https://doi.org/10.1016/j.biocontrol.2021.104568

Chaijamrus, S., & Udpuay, N. (2008). Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: CIGR Journal, X.

Chrouqi, L., Ouahmane, L., Jadrane, I., Koussa, T., & Alfeddy, M. N. (2017). Screening of soil rhizobacteria isolated from wheat plants grown in the Marrakech region (Morocco, North Africa) for plant growth promoting activities. JMES, 8, 3382-3390.

De Andrade, C. J., Simiqueli, A. P. R., De Andrade, L. M., Mendes, A. M., Jauregi, P., & Pastore, G. M. (2016). Comparative study: Bench-scale surfactin production from Bacillus subtilis using analytical grade and concentrated glycerol from the biodiesel industry. International Journal of Scientific World, 5, 28-37. https://doi.org/10.14419/ijsw.v5i1.6965

Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Analytical Chemistry, 86(9), 4431-4438. https://doi.org/10.1021/ac500290s

De Sousa, M., Dantas, I.T., Felix, A.K.N., de Sant’Ana, H.B., Melo, V.M.M., & Goncalves, L.R.B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57, 295-301. https://doi.org/10.1590/S1516-89132014000200019

Dmitrović, S., Pajčin, I., Vlajkov, V., Grahovac, M., Jokić, A., & Grahovac, J. (2022). Dairy and wine industry effluents as alternative media for the production of Bacillus-based biocontrol agents. Bioengineering, 9(11), 663. https://doi.org/10.3390/bioengineering9110663

Gojgic-Cvijovic, G. D., Jakovljevic, D. M., Loncarevic, B. D., Todorovic, N. M., Pergal, M. V., Ciric, J., ... Vrvic, M.M. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. International Journal of Biological Macromolecules, 121, 142-151. https://doi.org/10.1016/j.ijbiomac.2018.10.019

Hajnal Jafari, T. H., Stamenov, D., & Đurić, S. (2020). Proizvodnja i primena biopreparata. Novi Sad: Univerzitet u Novom Sadu, Poljoprivredni fakultet.

Hashem, A., Tabassum, B., & Abd Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004

Hua, L., Yong, C., Zhanquan, Z., Boqiang, L., Guozheng, Q., & Shiping, T. (2018). Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety, 2(3), 111-119. https://doi.org/10.1093/fqsafe/fyy016

Jamali, H., Sharma, A., Roohi, N., & Srivastava, A. K. (2020). Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology, 60(3), 268-280. https://doi.org/10.1002/jobm.201900347

Janek, T., Gudina, E. J., Połomska, X., Biniarz, P., Jama, D., Rodrigues, L. R., ... Lazar, Z. (2021). Sustainable surfactin production by Bacillus subtilis using crude glycerol from different wastes. Molecules, 26(12), 3488. https://doi.org/10.3390/molecules26123488

Khan, M. A., Hamayun, M., Asaf, S., Khan, M., Yun, B. W., Kang, S. M., & Lee, I. J. (2021). Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Frontiers in Plant Science, 12, 665590. https://doi.org/10.3389/fpls.2021.665590

Kumar, P., Dubey, R.C., & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. https://doi.org/10.1016/j.micres.2012.05.002

Mohandas, A., Raveendran, S., Parameswaran, B., Abraham, A., Athira, R. S., Mathew, A. K., & Pandey, A. (2018). Production of pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 56(1), 110-116. doi: 10.17113/ftb.56.01.18.5477

Ortiz, A., & Sansinenea, E. (2023). Microbial-based biopesticides: commercialization and regulatory perspectives. In O. Koul (Ed.), Development and Commercialization of Biopesticides (pp. 103-118). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-323-95290-3.00020-0

Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., & Grahovac, J. (2020). Pepper bacterial spot control by Bacillus velezensis: Bioprocess solution. Microorganisms, 8(10), 1463. https://doi.org/10.3390/microorganisms8101463

Rojas-Solis, D., Vences-Guzman, M.A., Sohlenkamp, C., & Santoyo, G. (2020). Antifungal and plant growth–promoting Bacillus under saline stress modify their membrane composition. Journal of Soil Science and Plant Nutrition, 20(3), 1549-1559. https://doi.org/10.1007/s42729-020-00246-6

Saimmai, A., Sobhon, V., & Maneerat, S. (2011). Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Applied Biochemistry and Biotechnology, 165, 315-335. https://doi.org/10.1007/s12010-011-9253-8

Samaras, A., Karaoglanidis, G.S., & Tzelepis, G. (2021). Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host. Microbiological Research, 248, 126752. https://doi.org/10.1016/j.micres.2021.126752

Shahid, I., Han, J., Hanooq, S., Malik, K.A., Borchers, C. H., & Mehnaz, S. (2021). Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Frontiers in Sustainable Food Systems, 5, 605195. https://doi.org/10.3389/fsufs.2021.605195

Shikha, Sharan, A., & Darmwal, N.S. (2007). Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource Technology, 98(4), 881-885. https://doi.org/10.1016/j.biortech.2006.03.023

Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C.K.M. (2017). Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 7, 2087. https://doi.org/10.3389/fmicb.2016.02087

Soliman, H.M., El-Metwally, M.A., Elkahky, M.T., & Badawi, W.E. (2015). Alternatives to chemical control of grey mold disease on cucumber caused by Botrytis cinerea Pers. Asian Journal of Plant Pathology, 9(1), 1-15. doi: 10.3923/ajppaj.2015.1.15

Soni, R., & Keharia, H. (2021). Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta, 254(3), 49. https://doi.org/10.1007/s00425-021-03695-0

Sousa, M., Melo, V.M.M., Rodrigues, S., Sant’Ana, H.B., & Goncalves, L. R. B. (2012). Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess and Biosystems Engineering, 35, 897-906. https://doi.org/10.1007/s00449-011-0674-0

Syed Ab Rahman, S.F., Singh, E., Pieterse, C.M.J., & Schenk, P.M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012

Toral, L., Rodriguez, M., Bejar, V., & Sampedro, I. (2020). Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7), 992. https://doi.org/10.3390/microorganisms8070992

Toure, Y., Ongena, M.A.R.C., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96(5), 1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x

Valenzuela-Avila, L., Miliar, Y., Moya-Ramirez, I., Chyhyrynets, O., Garcia-Roman, M., & Altmajer-Vaz, D. (2020). Effect of emulsification and hydrolysis pretreatments of waste frying oil on surfactin production. Journal of Chemical Technology & Biotechnology, 95(1), 223-231. https://doi.org/10.1002/jctb.6225

Vlajkov, V., Anđelić, S., Pajčin, I., Grahovac, M., Budakov, D., Jokić, A., & Grahovac, J. (2022). Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms, 10(6), 1165. https://doi.org/10.3390/microorganisms10061165

Vlajkov, V., Pajčin, I., Vučetić, S., Anđelić, S., Loc, M., Grahovac, M., & Grahovac, J. (2023). Bacillus-loaded biochar as soil amendment for improved germination of maize seeds. Plants, 12(5), 1024. https://doi.org/10.3390/plants12051024

White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J.A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

Yang, H., Yu, H., & Shen, Z. (2015). A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. Journal of Industrial Microbiology and Biotechnology, 42(8), 1139-1147. https://doi.org/10.1007/s10295-015-1635-4

Yang, Y., Wang, X., Chen, P., Zhou, K., Xue, W., Abid, K., & Chen, S. (2020). Redox status, JA and ET signaling pathway regulating responses to Botrytis cinerea infection between the resistant cucumber genotype and its susceptible mutant. Frontiers in Plant Science, 11, 559070. https://doi.org/10.3389/fpls.2020.559070

Zhou, Y., Yang, X., Li, Q., Peng, Z., Li, J., & Zhang, J. (2023). Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiology, 23(1), 1-12. https://doi.org/10.1186/s12866-023-02838-5

Published
2023/12/29
Section
Original Scientific Paper