Uticaj sastava medijuma na sposobnost podsticanja rasta biljaka i biokontrolna svojstva izolata Bacillus sp. Par 3 protiv fitopatogena Botrytis cinerea
Sažetak
Jedan od globalnih problema današnjice predstavljaju značajani gubici u poljoprivredi usled biljnih bolesti koje izazivaju različiti patogeni. Među ovim patogenima, bitnu ulogu ima plasan Botrytis cinerea, koja kao uzročnik sive truleži, nanosi veliku štetu različitim važnim usevima. Upotreba biokontrolnih agenasa za suzbijanje fitopatogena postala je imperativ, pri čemu bakterije iz roda Bacillus imaju veliki potencijal zbog brzog razmnožavanja, otpornosti na nepovoljne uslove okoline, sposobnosti promovisanja rasta biljaka i širokog spektra delovanja. Cilj ovog istraživanja bio je da se utvrde najbolji izvori ugljenika, azota i fosfora u medijumu za kultivaciju Bacillus bakterija, sa namerom da se postigne što veća antimikrobna aktivnost protiv fitopatogena B. cinerea i podstakne brži rast krastavca u različitim fazama razvoja, primenom izolata Bacillus sp. Par 3. Da bi se utvrdila najpogodnija kombinacija izvora ugljenika, azota i fosfora za proizvodnju bioaktivnih agenasa koji efikasno deluju protiv B. cinerea od strane izolata Bacillus sp. Par 3, primenjena je metoda bunarića. Uticaj izolata Bacillus sp. Par 3 na klijanje biljaka testiran je na semenkama krastavca. Najveće zone inhibicije postignute su pri upotrebi sledeća 2 medijuma: 1) saharoza kao izvor ugljenika, amonijum nitrat kao izvor azota i diamonijum hidrogenfosfat kao izvor fosfora, i 2) glicerol kao izvor ugljenika, amonijum nitrat kao izvor azota i dikalijum hidrogenfosfat kao izvor fosfora. Semena tretirana kultivacionom tečnošću izolata Bacillus sp. Par 3 korišćenjem optimizovanog medijuma pokazala su najbolje rezultate u pogledu procenta klijanja (100%), dužine korena (53,09 mm) i dužine izdanka (13,26 mm) krastavca. Bacillus sp. Par 3 izolat je identifikovan kao Bacillus subtilis metodom sekvenciranja 16S rRNA gena. Rezultati ovog istraživanja ističu značaj optimizacije medijuma za proizvodnju biokontrolnih agenasa, uzimajući u obzir kako antimikrobnu efikasnost, tako i karakteristike promocije rasta biljaka.
Reference
Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., Al-Makhmari, H. S., & Al-Sulaimani, H. S. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation, 81, 141-146. https://doi.org/10.1016/j.ibiod.2012.01.006
Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., ... Brader, G. (2016). Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environmental Microbiology, 18(8), 2634-2645. https://doi.org/10.1111/1462-2920.13405
Bu, S., Munir, S., He, P., Li, Y., Wu, Y., Li, X., ... He, Y. (2021). Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biological Control, 157, 104568. https://doi.org/10.1016/j.biocontrol.2021.104568
Chaijamrus, S., & Udpuay, N. (2008). Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: CIGR Journal, X.
Chrouqi, L., Ouahmane, L., Jadrane, I., Koussa, T., & Alfeddy, M. N. (2017). Screening of soil rhizobacteria isolated from wheat plants grown in the Marrakech region (Morocco, North Africa) for plant growth promoting activities. JMES, 8, 3382-3390.
De Andrade, C. J., Simiqueli, A. P. R., De Andrade, L. M., Mendes, A. M., Jauregi, P., & Pastore, G. M. (2016). Comparative study: Bench-scale surfactin production from Bacillus subtilis using analytical grade and concentrated glycerol from the biodiesel industry. International Journal of Scientific World, 5, 28-37. https://doi.org/10.14419/ijsw.v5i1.6965
Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Analytical Chemistry, 86(9), 4431-4438. https://doi.org/10.1021/ac500290s
De Sousa, M., Dantas, I.T., Felix, A.K.N., de Sant’Ana, H.B., Melo, V.M.M., & Goncalves, L.R.B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57, 295-301. https://doi.org/10.1590/S1516-89132014000200019
Dmitrović, S., Pajčin, I., Vlajkov, V., Grahovac, M., Jokić, A., & Grahovac, J. (2022). Dairy and wine industry effluents as alternative media for the production of Bacillus-based biocontrol agents. Bioengineering, 9(11), 663. https://doi.org/10.3390/bioengineering9110663
Gojgic-Cvijovic, G. D., Jakovljevic, D. M., Loncarevic, B. D., Todorovic, N. M., Pergal, M. V., Ciric, J., ... Vrvic, M.M. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. International Journal of Biological Macromolecules, 121, 142-151. https://doi.org/10.1016/j.ijbiomac.2018.10.019
Hajnal Jafari, T. H., Stamenov, D., & Đurić, S. (2020). Proizvodnja i primena biopreparata. Novi Sad: Univerzitet u Novom Sadu, Poljoprivredni fakultet.
Hashem, A., Tabassum, B., & Abd Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Hua, L., Yong, C., Zhanquan, Z., Boqiang, L., Guozheng, Q., & Shiping, T. (2018). Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety, 2(3), 111-119. https://doi.org/10.1093/fqsafe/fyy016
Jamali, H., Sharma, A., Roohi, N., & Srivastava, A. K. (2020). Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology, 60(3), 268-280. https://doi.org/10.1002/jobm.201900347
Janek, T., Gudina, E. J., Połomska, X., Biniarz, P., Jama, D., Rodrigues, L. R., ... Lazar, Z. (2021). Sustainable surfactin production by Bacillus subtilis using crude glycerol from different wastes. Molecules, 26(12), 3488. https://doi.org/10.3390/molecules26123488
Khan, M. A., Hamayun, M., Asaf, S., Khan, M., Yun, B. W., Kang, S. M., & Lee, I. J. (2021). Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Frontiers in Plant Science, 12, 665590. https://doi.org/10.3389/fpls.2021.665590
Kumar, P., Dubey, R.C., & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. https://doi.org/10.1016/j.micres.2012.05.002
Mohandas, A., Raveendran, S., Parameswaran, B., Abraham, A., Athira, R. S., Mathew, A. K., & Pandey, A. (2018). Production of pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 56(1), 110-116. doi: 10.17113/ftb.56.01.18.5477
Ortiz, A., & Sansinenea, E. (2023). Microbial-based biopesticides: commercialization and regulatory perspectives. In O. Koul (Ed.), Development and Commercialization of Biopesticides (pp. 103-118). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-323-95290-3.00020-0
Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., & Grahovac, J. (2020). Pepper bacterial spot control by Bacillus velezensis: Bioprocess solution. Microorganisms, 8(10), 1463. https://doi.org/10.3390/microorganisms8101463
Rojas-Solis, D., Vences-Guzman, M.A., Sohlenkamp, C., & Santoyo, G. (2020). Antifungal and plant growth–promoting Bacillus under saline stress modify their membrane composition. Journal of Soil Science and Plant Nutrition, 20(3), 1549-1559. https://doi.org/10.1007/s42729-020-00246-6
Saimmai, A., Sobhon, V., & Maneerat, S. (2011). Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Applied Biochemistry and Biotechnology, 165, 315-335. https://doi.org/10.1007/s12010-011-9253-8
Samaras, A., Karaoglanidis, G.S., & Tzelepis, G. (2021). Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host. Microbiological Research, 248, 126752. https://doi.org/10.1016/j.micres.2021.126752
Shahid, I., Han, J., Hanooq, S., Malik, K.A., Borchers, C. H., & Mehnaz, S. (2021). Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Frontiers in Sustainable Food Systems, 5, 605195. https://doi.org/10.3389/fsufs.2021.605195
Shikha, Sharan, A., & Darmwal, N.S. (2007). Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource Technology, 98(4), 881-885. https://doi.org/10.1016/j.biortech.2006.03.023
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C.K.M. (2017). Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 7, 2087. https://doi.org/10.3389/fmicb.2016.02087
Soliman, H.M., El-Metwally, M.A., Elkahky, M.T., & Badawi, W.E. (2015). Alternatives to chemical control of grey mold disease on cucumber caused by Botrytis cinerea Pers. Asian Journal of Plant Pathology, 9(1), 1-15. doi: 10.3923/ajppaj.2015.1.15
Soni, R., & Keharia, H. (2021). Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta, 254(3), 49. https://doi.org/10.1007/s00425-021-03695-0
Sousa, M., Melo, V.M.M., Rodrigues, S., Sant’Ana, H.B., & Goncalves, L. R. B. (2012). Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess and Biosystems Engineering, 35, 897-906. https://doi.org/10.1007/s00449-011-0674-0
Syed Ab Rahman, S.F., Singh, E., Pieterse, C.M.J., & Schenk, P.M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
Toral, L., Rodriguez, M., Bejar, V., & Sampedro, I. (2020). Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7), 992. https://doi.org/10.3390/microorganisms8070992
Toure, Y., Ongena, M.A.R.C., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96(5), 1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
Valenzuela-Avila, L., Miliar, Y., Moya-Ramirez, I., Chyhyrynets, O., Garcia-Roman, M., & Altmajer-Vaz, D. (2020). Effect of emulsification and hydrolysis pretreatments of waste frying oil on surfactin production. Journal of Chemical Technology & Biotechnology, 95(1), 223-231. https://doi.org/10.1002/jctb.6225
Vlajkov, V., Anđelić, S., Pajčin, I., Grahovac, M., Budakov, D., Jokić, A., & Grahovac, J. (2022). Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms, 10(6), 1165. https://doi.org/10.3390/microorganisms10061165
Vlajkov, V., Pajčin, I., Vučetić, S., Anđelić, S., Loc, M., Grahovac, M., & Grahovac, J. (2023). Bacillus-loaded biochar as soil amendment for improved germination of maize seeds. Plants, 12(5), 1024. https://doi.org/10.3390/plants12051024
White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J.A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
Yang, H., Yu, H., & Shen, Z. (2015). A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. Journal of Industrial Microbiology and Biotechnology, 42(8), 1139-1147. https://doi.org/10.1007/s10295-015-1635-4
Yang, Y., Wang, X., Chen, P., Zhou, K., Xue, W., Abid, K., & Chen, S. (2020). Redox status, JA and ET signaling pathway regulating responses to Botrytis cinerea infection between the resistant cucumber genotype and its susceptible mutant. Frontiers in Plant Science, 11, 559070. https://doi.org/10.3389/fpls.2020.559070
Zhou, Y., Yang, X., Li, Q., Peng, Z., Li, J., & Zhang, J. (2023). Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiology, 23(1), 1-12. https://doi.org/10.1186/s12866-023-02838-5
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).