Evaluation of the viability of old seeds of several important agricultural weeds

  • Danijela Šikuljak Institut za zaštitu bilja i đivotnu sredinu, Beograd
  • Ahmet Uludag Faculty of Agriculture, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale
  • Ana Anđelković Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade
  • Nenad Trkulja Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade
  • Dragana Božić University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade
  • Sava Vrbničanin University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade
Keywords: germination, seed longevity, seed persistence, viable seeds, weed seeds

Abstract


Persistent seed banks are equally important in agriculture and invasion biology. While seed vitality persistence exemplifies an eternal uphill battle for weed control in agriculture, it signals a potential invasiveness of species in invasion biology. Considering yield losses caused by Amaranthus retroflexus, Abutilon theophrasti, Chenopodium album and Datura stramonium in agriculture, and the importance of Ambrosia trifida as an emerging invader in Europe, the objective of this study was to test the viability and longevity of the aged seeds of these economically important weeds. Three seed viability/longevity tests were conducted: the crush test, germination test in Petri dishes, and 3,5-triphenyltetrazolium chloride (TTC) test.
The results revealed a significant variation in germination potential among the tested species. The highest vitality was observed in 7-year-old seeds of A. retroflexus (41.67 %), followed by 16-year-old A. theophrasti seeds (17.78 %), 13-year-old C. album seeds (15.00 %) and 17-yearold D. stramonium seeds (7.5 %). Furthermore, a remarkable seed longevity was documented in the tested species (with the exception of A. trifida), preserving their germination potential for over half a century. Seed germination was recorded in 49-year-old seeds of D. stramonium, 53-year-old seeds of A. retroflexus, 58-year-old seeds of A. theophrasti and 59-year-old seeds of C. album, in strong evidence of the persistence of these weed species’ seeds in the environment.

References

Abul-Fatih, H.A., & Bazzaz, F.A. (1979). The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytologist, 83(3), 817-827.

Andersen, R.N. (1968). Germination and establishment of weeds for experimental purposes. (Weed Science Society of America Handbook). Geneva, N.Y.: W.F. Humphrey Press Inc.

Bajwa, A.A., Zulfiqar, U., Sadia, S., Bhowmik, P., & Chauhan, B.S. (2019). A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research, 26(6), 5357-5371.

Baysinger, J.A., & Sims, B.D. (1991). Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Science, 39(3), 358-362.

Bekker, R.M., Bakker, J.P., Grandin, U., Kalamees, R., Milberg, P., Poschlod, P. … Willems, J.H. (1998). Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology, 12(5), 834-842.

Bekker, R.M., Bakker, J.P., Ozinga, W.A., & Thompson, K. (2003). Seed traits: essential for understanding seed longevity. Aspects of Applied Biology, 69, 1-10.

Benvenuti, S., Macchia, M., & Miele, S. (2001). Light, temperature and burial depth effects on Rumex obtusifolius seed germination and emergence. Weed Research, 41(2), 177-186.

Borza, J.K., Westerman, P.R., & Liebman, M. (2007). Comparing estimates of seed viability in three foxtail (Setaria) species using the imbibed seed crush test with and without additional tetrazolium testing. Weed Technology, 21(2), 518-522.

Clements, D.R., DiTommaso, A., Jordan, N., Booth, B.D., Cardina, J., Doohan, D. ... Swanton, C.J. (2004). Adaptability of plants invading North American cropland. Agriculture, Ecosystems & Environment, 104(3), 379-398.

Conklin, M.E. (1976). Genetic and biochemical aspects of development of Datura. (Monographs in developmental biology). New York, NY: S. Karger.

Conn, J.S., Beattie, K.L., & Blanchard, A. (2006). Seed viability and dormancy of 17 weed species after 19.7 years of burial in Alaska. Weed Science, 54(3), 464-470.

Conn, J.S., & Deck, R.E. (1995). Seed viability and dormancy of 17 weed species after 9.7 years of burial in Alaska. Weed Science, 43(4), 583-585.

Conn, J.S., & Farris, M.L. (1987). Seed viability and dormancy of 17 weed species after 21 months in Alaska. Weed Science, 35(4), 524-528.

Costea, M., Weaver, S.E., & Tardif, F.J. (2004). The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson & A. hybridus L. Canadian Journal of Plant Science, 84, 631-668.

Csontos, P., Kalapos, T., & Tamas, J. (2016). Comparison of seed longevity for thirty forest, grassland and weed species of the Central European flora: results of a seed burial experiment. Polish Journal of Ecology, 64(3), 313-326.

Daehler, C.C., Denslow, J.S., Ansari, S., & Kuo, H.C. (2004). A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conservation Biology, 18(2), 360-368.

Darlington, H.T., & Steinbauer, G.P. (1961). The eighty-year period for Dr. Beal’s seed viability experiment. American Journal of Botany, 48(4), 321-325.

Davis, A.S., Cardina, J., Forcella, F., Johnson, G.A., Kegode, G., Lindquist, J.L. … Williams II, M.M. (2005). Environmental factors affecting seed persistence of annual weeds across the US corn belt. Weed Science 53(6), 860-868.

Dorado, J., Fernandez-Quintanilla, C., & Grundy, A.C. (2009). Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science, 57(2), 155-162.

Egley, G.H., & Chandler, J.M. (1978). Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Science, 26(3), 230-239.

Follak, S., Dullinger, S., Kleinbauer, I., Moser, D., & Essl, F. (2013). Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia, 85(1), 41-61.

Ghosh, B., Perry, M.P., & Marsh, D.G. (1991). Cloning the cDNA encoding the AmbtV allergen from giant ragweed (Ambrosia trifida) pollen. Gene, 101(2), 231-238.

Gioria, M., Pyšek, P., Baskin, C.C., & Carta, A. (2020). Phylogenetic relatedness mediates persistence and density of soil seed banks. Journal of Ecology, 108(5), 2121-2131.

Gonzalez-Alday, J., Gonzalez-Alday, J., Marrs, R.H,, & Martinez-Ruiz, C. (2009). Soil seed bank formation during early revegetation after hydroseeding in reclaimed coal wastes. Ecological Engineering, 35, 1062-1069.

Grabe, D.F. (1970). Tetrazolium testing handbook for agricultural seeds (Contribution No. 29). In Peters, J. (ed.), Handbook on seed testing. Las Cruces, NM: Association of Official Seed Analysts.

Hagood, E.S., Bauman, T.T., Williams, J.L., & Schreiber, M.M. (1981). Growth analysis of soybeans (Glycine max) in competition with jimsonweed (Datura stramonium). Weed Science, 29(4), 500-504.

Harrison, S.K., Regnier, E.E., Schmoll, J.T., & Harrison, J.M. (2007). Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Science, 55(1), 16-22.

Harrison, S.K., Regnier, E.E., Schmoll, J.T., & Webb, J.E. (2001). Competition and fecundity of giant ragweed in corn. Weed Science, 49(2), 224-229.

Heap, I (2020). The International Herbicide-Resistant Weed Database. http://www.weedscience.org/

Hiebert, R.D. (1997). Prioritizing invasive plants and planning for management. In Luken, J.O., Thieret J.W. (Eds), Assessment and management of plant invasions. Springer Series on Environmental Management. Springer, New York, 195-212. https://doi.org/10.1007/978-1-4612-1926-2_15

Holm, L.G., Plucknelt, L.D., Pancho, J., & Herberger, J. (1977). World’s worst weeds. Distribution and Biology. Honolulu, HI: University Press of Hawaii.

Horowitz, M., & Taylorson, R.B. (1984). Hardseededness and germinability of velvetleaf (Abutilon theophrasti) as affected by temperature and moisture. Weed Science, 32(1), 111-115.

International Seed Testing Association (1985). International rules for seed testing. Seed Science and Technology, 13, 300-520.

Jursik, M., Soukup, J., Venclova, V., & Holec, J. (2003). Seed dormancy and germination of shaggy soldier (Galinsoga ciliata Blake.) and common lambsquarter (Chenopodium album L.). Plant, Soil and Environment, 49(11), 511-518.

Kil, J.H., Shim, K.C., Park, S.H., Koh, K.S., Suh, M.H., Ku, Y.B. & Kong, H.Y. (2004). Distributions of naturalized alien plants in South Korea. Weed Technology, 18(sp.1), 1493-1495.

Leck, M.A. (1989). Wetland seed banks. In Leck M.A., Parker, V.T., Simpson, R.L. (Eds), Ecology of soil seed banks (pp. 283-305). London, NY: Academic Press.

Leist, N., Kramer, S., & Jonitz, A. (2003). ISTA working sheets on tetrazolium testing,Volumes I and II. Zurich, Switzerland: International Seed Testing Association (ISTA) Tetrazolium Committee.

Lerman, J.C., & Cigliano, E.M. (1971). New carbon-14 evidence for six hundred years old Canna compacta seed. Nature, 232(5312), 568-570.

Lueschen, W.E., & Andersen, R.N. (1980). Longevity of velvetleaf (Abutilon theophrasti) seeds in soil under agricultural practices. Weed Science, 28(3), 341-346.

McDonald, A.J., Riha, S.J., & Mohler, C.L. (2004). Mining the record: historical evidence for climatic influences on maize–Abutilon theophrasti competition. Weed Research, 44(6), 439-445.

Mennan, H. (2003). The effects of depth and duration of burial on seasonal germination, dormancy and viability of Galium aparine and Bifora radians seeds. Journal of Agronomy and Crop Science, 189(5), 304-309.

Mennan, H., & Ngouajio, M. (2006). Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber). Weed Science, 54(1), 114-120.

Mercado, S.A.S., Caleno, J.D.Q., & Rozo, L.Y.M. (2020). Improvement of the methodology of the tetrazolium test using different pretreatments in seeds of the genus Epidendrum (Orchidaceae). Journal of Seed Science, 42, https://doi.org/10.1590/2317-1545v42231028

Mercado, S.A.S., & Delgado, E.A.B. (2018). Viabilidad de semillas de Glycine max (L.) Utilizando la prueba de tetrazolio. RIAA, 9(2), 89-98.

Meseldžija, M., Rajković, M., Dudić, M., Vranešević, M., Bezdan, A., Jurišić, A., & Ljevnaić-Mašić, B. (2020). Economic feasibility of chemical weed control in soybean production in Serbia. Agronomy, 10(2), 291.

Milberg, P. (1994). Germination of up to 129-year old, drystored seeds of Geranium bohemicum (Geraniaceae). Nordic Journal of Botany, 14(1), 27-29.

Miraldi, E., Masti, A., Ferri, S., & Comparini, I.B. (2001). Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia, 72(6), 644-648.

Monaco, T.J., Grayson, A.S., & Sanders, D.C. (1981). Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science, 29(4), 394-397.

Naylor, J.M. (1983). Studies on the genetic control of some physiological processes in seeds. Canadian Journal of Botany, 61(12), 3561-3567.

Newton, R., Hay, F., & Probert, R. (2009). Protocol for comparative seed longevity testing. Kew, UK: Seed Conservation Department, Millennium Seed Bank Project.

Ogunmoyole, T., Adeyeye, R.I., Olatilu, B.O., Akande, O.A., & Agunbiade, O.J. (2019). Multiple organ toxicity of Datura stramonium seed extracts. Toxicology Reports, 6, 983-989.

Priestley, D.A. (1986). Seed aging: implications for seed storage and persistence in the soil (Review). Journal of Applied Ecology, 24, 326.

Roberts, H.A., & Dawkins, P.A. (1967). Effect of cultivation on the numbers of viable weed seeds in soil. Weed Research, 7(4), 290-301.

Roberts, H.A., & Feast, P.M. (1973). Changes in the numbers of viable weed seeds in soil under different regimes. Weed Research, 13(3), 298-303.

Sarabi, V., Mahallati, M.N., Nezami, A., & Mohassel, M.H.R. (2013). Effects of common lambsquarters (Chenopodium album L.) Emergence time and density on growth and competition of maize (Zea mays L.). Australian Journal of Crop Science, 7(5), 532-537.

Savić, A., Pavlović, D., Božić, D., & Vrbničanin, S. (2019). Negativan uticaj Ambrosia artemisiifolia i A. trifida na poljoprivrednu proizvodnju (The negative influence of Ambrosia artemisiifolia and A. trifida on agriculture production). Biljni lekar / Plant Doctor, 47(5), 317-329.

Sawma, J.T., & Mohler, C.L. (2002). Evaluating seed viability by an unimbibed seed crush test in comparison with the tetrazolium test. Weed Technology, 16(4), 781-786.

Schutte, В.J. (2007). Biology and Ecology of Ambrosia trífida L. seedling emergence (Ph.D. thesis). Columbus, OH: The Ohio State University.

Seiler, G.J. (2010). Germination and viability of wild sunflower species achenes stored at room temperature for 20 years. Seed Science and Technology, 38(3), 786-791.

Stebbing, J.A., Wilson, R.G., Martin, A.R., & Smith, J.A. (2000). Row spacing, redroot pigweed (Amaranthus retroflexus) density, and sugarbeet (Beta vulgaris) cultivar effects on sugarbeet development. Journal of Sugar Beet Research, 37(2), 11-31.

Toole, E.H., & Brown, E. (1946). Final results of the Duvel buried seed experiment. Journal of Agricultural Research, 72(6), 201-210.

Uremis, I., & Uygur, F.N. (2005). Seed viability of some weed species after 7 years of burial in the Cukurova region of Turkey. Asian Journal of Plant Science, 4, 1-5.

Vivrette, N., & Meyr, A. (2002). Testing native species with deep dormancy. Seed Technology, 24(1), 43-51.

Vrbničanin, S. (2015). Invazivni korovi: invazivni procesi, ekološko-genetički potencijal, unošenje, predviđanje, rizici, širenje, štete i kartiranje. Beograd: Herbološko društvo Srbije.

Warnes, D.D., & Andersen, R.N. (1984). Decline of wild mustard (Brassica kaber) seeds in soil under various cultural and chemical practices. Weed Science, 32(2), 214-217.

Weaver, S.E., & Thomas, A.G. (1986). Germination responses to temperature of atrazine-resistant and –susceptible biotypes of two pigweed (Amaranthus) species. Weed Science, 34(6), 865-870.

Webb, D.M., Smith, C.W., & Schulz-Schaeffer, J. (1987). Amaranth seedling emergence as affected by seeding depth and temperature on a thermogradient plate 1. Agronomy Journal, 79(1), 23-26.

Webster, T.M., Loux, M.M., Regnier, E.E., & Harrison, S.K. (1994). Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technology, 8(3), 559-564.

Wiebach, J., Nagel, M., Borner, A., Altmann, T., & Riewe, D. (2020). Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. Plant, Cell & Environment, 43(2), 303-314.

Wilson, B.J. (1985). Effect of seed age and cultivation on seedling emergence and seed decline of Avena fatua L. in winter barley. Weed Research, 25(3), 213-219.

Wilson, B.J., & Lawson, H.M. (1992). Seedbank persistence and seedling emergence of seven weed species in autumnsown crops following a single year’s seeding. Annals of Applied Biology, 120(1), 105-116.

Ziska, L. (2013). Observed changes in soyabean growth and seed yield from Abutilon theophrasti competition as a function of carbon dioxide concentration. Weed Research, 53(2), 140-145.

Published
2024/06/06
How to Cite
Šikuljak, D., Uludag, A., Anđelković, A., Trkulja, N., Božić, D., & Vrbničanin, S. (2024). Evaluation of the viability of old seeds of several important agricultural weeds. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 39(1), 13-26. https://doi.org/10.2298/PIF2401013S
Section
Original Scientific Paper