Sclerotinia species in Serbia and possibilities of their control

  • Milica Mihajlović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Jovana Hrustić Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Maja Živanović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Mladen Petreš Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad,
  • Brankica Pešić Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
Keywords: plant-pathogenic fungi, Sclerotinia sclerotiorum, S. trifoliorum, S. minor, identification, plant disease control

Abstract


Sclerotinia species are economically important, necrotrophic and aggressive plant

pathogens with a broad host range and worldwide distribution. They act as airborne or

soilborne pathogens, and can be transmitted by seed. These pathogens can affect crops

both during the growing season and after harvest. Yield losses due to Sclerotinia diseases

in susceptible crops vary and may be as high as 100%. The most common pathogen from

the genus Sclerotinia in Serbia is S. sclerotiorum. It occurs regularly on sunflower and its

incidence may exceed 50% in some years, thus causing economically important crop losses

in Vojvodina. Recently, two new species were detected in Serbia: S. trifolium in alfalfa and

S. minor in lettuce plants. Diseases caused by Sclerotinia spp. are difficult to control due to

the long-term survival of sclerotia in the soil and development of airborne ascospores. As

with many other diseases, there is no single treatment that can completely control these

pathogens. Implementation of multiple strategies, such as cultural practices (sanitation, crop

rotation and tillage), physical, chemical and biological protection, as well as deployment of

resistant cultivars, is necessary for effective disease management.

References

Abawi, G.S., & Grogan, R.G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69(8), 899-904.

Abd-Elmagid, A., Garrido, P.A., Hunger, R., Lyles, J.L., Mansfield, M.A., Gugino, B.K. … Garzon, C.D. (2013). Discriminatory simplex and multiplex PCR for four species of the genus Sclerotinia. Journal of Microbiological Methods, 92(3), 293-300.

Adams, P.B., & Ayers, W.A. (1979). Ecology of Sclerotinia species. Phytopathology, 69(8), 896-899.

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University - Science, 26(1), 1-20.

Aldrich-Wolfe, L., Travers, S., & Nelson Jr, B.D. (2015). Genetic variation of Sclerotinia sclerotiorum from multiple crops in the North Central United States. PLOS ONE, 10(9), e0139188. doi: 10.1371/journal.pone.0139188. eCollection 2015

Anas, O., & Reeleder, R.D. (1988). Feeding habits of larvae of Bradysia coprophila on fungi and plant tissue. Phytoprotection, 69(2), 73-78.

Barbetti, M. J., & You, M. P. (2014). Opportunities and challenges for improved management of foliar pathogens in annual clover pastures across southern Australia. Crop and Pasture Science, 65(12), 1249-1266.

Bardin, S.D., & Huang, H.C. (2001). Research on biology and control of Sclerotinia diseases in Canada1. Canadian Journal of Plant Pathology, 23(1), 88-98. https://doi.org/10.1080/07060660109506914

Bolton, M.D., Thomma, B.P., & Nelson, B.D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1), 1-16.

Chen, X., Zhang, Y., Fu, X., Li, Y., & Wang, Q. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113-121.

Cho, H.S., Shin, J.S., Kim, J.H., Hong, T.K., Cho, D.H., & Kang, J.Y. (2013). First report of Sclerotinia white rot caused by Sclerotinia nivalis on Panax ginseng in Korea. Research in Plant Disease, 19(1), 49-54.

Clarkson, J.P., Phelps, K., Whipps, J.M., Young, C.S., Smith, J.A., & Watling, M. (2004). Forecasting Sclerotinia disease on lettuce: Toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology, 94(3), 268-279.

Clarkson, J.P., Phelps, K., Whipps, J.M., Young, C.S., Smith, J.A., & Watling, M. (2007). Forecasting Sclerotinia disease on lettuce: A predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia. Phytopathology, 97(5), 621-631.

Coley-Smith, J.R., & Cooke, R.C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65-92.

Ćosić, J., Jurković, D., Vrandečić, K., & Kaučić, D. (2012). Survival of buried Sclerotinia sclerotiorum sclerotia in undisturbed soil. Helia, 35(56), 73-78.

Delclos, B., & Raynal, G. (1995). Comparison of techniques for the production of Sclerotinia trifoliorum ascospores in the laboratory for forage legumes resistance tests. Journal of Phytopathology, 143(6), 345-348.

Derbyshire, M.C., & Denton-Giles, M. (2016). The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathology, 65(6), 859-877.

Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E. … Kubicek, C.P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749-759.

Hao, J.J., & Subbarao, K.V. (2005). Comparative analyses of lettuce drop epidemics caused by Sclerotinia minor and S. sclerotiorum. Plant Disease, 89(7), 717-725.

Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25.

Huang, H.C. (1985). Factors affecting myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 75(4), 433-437.

Hu, W., Gao, Q., Hamada, M.S., Dawood, D.H., Zheng, J., Chen, Y., & Ma, Z. (2014). Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology, 104(12), 1289-1297.

Ekins, M.G., Aitken, E.A.B., & Goulter, K.C. (2005). Identification of Sclerotinia species. Australasian Plant Pathology, 34(4), 549-555.

Eriksson, J. (1880). Om klofverrotan, med sarskildt afseende pa dess upptradande i vart land under aren 1878-79. Kungliga Landtbruks-akademiens handlingar och tidskrift, 28-42.

Farr, D.F., Bills, G.F., Chamuris, G.P., & Rossman, A.Y. (1989). Fungi on plants and plant products in the United States. St. Paul, MN: APS press.

Freeman, J., Ward, E., Calderon, C., & McCartney, A. (2002). A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 108, 877-886.

Johnson, D.A., & Atallah, Z.K. (2014). Disease cycle, development and management of Sclerotinia stem rot of potato. American Journal of Plant Sciences, 5(25), Article 25, 3717-3726.

Kanbe, M., Mizucami, Y., & Fujimoto, F. (2002). Improvement of resistance to Sclerotinia crown and stem rot of alfalfa through phenotypic recurrent selection. Japan Agricultural Research Quarterly (JARQ), 36(1), 1-5.

Kikutake, K., Furuya, T., Hasebe, M., Nagai, H., & Oda, M. (2020). Development of a novel fungicide, pyraziflumid. Journal of Pesticide Science, 45(3), 184-190.

Kim, W., & Cho, W. (2002). Occurrence of Sclerotinia rot on composite vegetable crops and the causal Sclerotinia spp. Mycobiology, 30, 41-46.

Kohn, L. (1979). Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69, 881-886. https://doi.org/10.1094/Phyto-69-881.

Lee, J.H., Kim, Y.G., Cho, M.H., Kim, J.A., & Lee, J. (2012). 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiology Letters, 329(1), 36-44.

Liang, X., & Rollins, J.A. (2018). Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 108(10), 1128–1140.

Lin, L., Fan, J., Li, P., Liu, D., Ren, S., Lin, K. … Wu, J. (2022). The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. Journal of Experimental Botany, 73(19), 6663-6677.

Loveless, A.R. (1951). The confirmation of the variety Fabae Keay of Sclerotinia trifoliorum Eriksson. Annals of Applied Biology, 38(1), 252-275.

Lumsden, R. (1979). Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology, 69, 890. https://doi.org/10.1094/Phyto-69-890.

Marić, A., Čamprag, D., & Maširević, S. (1988): White rot (Sclerotinia sclerotiorum). In: S Milošević (ed.), Diseases and pests of sunflower and their control (pp 69-83). Belgrade, Serbia: Nolit.

Marum, P., Smith, R.R., & Grau, C.R. (1994). Development of procedures to identify red clover resistant to Sclerotinia trifoliorum. Euphytica, 77(3), 257-261.

Matheron, M.E., & Porchas, M. (2018). Impact of summer flooding on viability of Sclerotinia minor and S. sclerotiorum sclerotia in soil. Plant Health Progress, 19(1), 15-18.

Mazumdar, P. (2021). Sclerotinia stem rot in tomato: A review on biology, pathogenicity, disease management and future research priorities. Journal of Plant Diseases and Protection, 128(6), 1403-1431.

Melzer, M.S., Smith, E.A., & Boland, G.J. (1997). Index of plant hosts of Sclerotinia minor. Canadian Journal of Plant Pathology, 19, 272-280.

Mihajlović, M. (2014). Patogeni paprike iz zemljišta i mogućnost njihovog suzbijanja fungicidima (Soilborne pathogens of pepper and possibilities of fungicide control) (PhD dissertation), Belgrade University, Faculty of Agriculture, 154.

Mihajlović, M., Hrustić, J., Gašić, S., Rekanović, E., Grahovac, M., Delibašić, G., & Tanović, B. (2017b). Antagonistički efekat sporogenih bakterija na patogene iz zemljišta (str. 82-83). Zbornik rezimea radova XIV savetovanja o zaštiti bilja, Zlatibor.

Mihajlović, M., Hrustić, J., Grahovac, M., Rekanović, E., Lazić, M., & Tanović, B. (2016a). Sclerotinia trifoliorum – prouzrokovač propadanja biljaka lucerke (str. 99-100). In: Zbornik rezimea radova XV simpozijuma o zaštiti bilja, Zlatibor.

Mihajlović, M., Hrustić, J., Grahovac, M., & Tanović, B. (2022a). First report of Sclerotinia minor on lettuce in Serbia. Plant Disease, 106(10), 2754.

Mihajlović, M., Hrustić, J., Rekanović, E., Šefer, L., & Tanović, B. (2022b). Antagonistic activity of Trichoderma spp. against soilborne pathogens. In: Book of Abstracts 4th International Conference on Plant Biology and 23rd SPPS Meeting (p 113). Belgrade, Serbia: Serbian Plant Physiology Society.

Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., Stevanović, M., & Tanović, B. (2023b). Can Sclerotinia stem and root rot be managed effectively without causing environmental imbalance in soil? Pesticides and Phytomedicine / Pesticidi i fitomedicina, 38(1), 11-21.

Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., & Tanović, B. (2016b). Mogućnost biološkog suzbijanja patogena iz zemljišta. Biljni lekar, 44(3), 231-240.

Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., & Tanović, B. (2016c). Uloga agrotehničkih mera u prevenciji infekcije biljaka patogenima iz zemljišta. Biljni lekar, 44(4), 333-342.

Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., Tanović, B. (2017a). Methods for management of soilborne plant pathogens. Pesticides and Phytomedicine, 32(1), 9-24.

Mihajlović, M., Rekanović, E., & Tanović, B. (2015). In vitro and in vivo toxicity of novel fungicide fluopyram to soilborne pathogens (p 181). In Book of abstracts of 67th International Symposium on Crop Protection, Ghent, Belgium.

Mihajlović, M., Rekanović, E., Tanović, B., Hrustić, J., Stepanović, M., Milijašević-Marčić, S., & Potočnik, I. (2012). Possibilities of use of Bacillus subtilis (QST 713) against soil pathogens of pepper (p 215). In: Book of Abstracts of I International Symposium and XVII Scientific Conference of Agronomists of Republika Srpska, Trebinje, Bosnia and Herzegovina.

Mihajlović M., Živanović, M., Hrustić, J., & Pešić, B. (2023a). Sclerotinia minor as a new pathogen of lettuce in Serbia. In: Book of Abstracts of XIV International Scientific Agriculture Symposium „AGROSYM 2023“ (pp 349). Sarajevo, Bosnia and Herzegovina: University of East Sarajevo, Faculty of Agriculture.

Morrall, R.A.A., Duczek, L.J., & Sheard, J.W. (1972). Variations and correlations within and between morphology, pathogenicity, and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Canadian Journal of Botany, 50(4), 767-786.

Njambere, E.N., Attanayake, R.N., & Chen, W. (2010). Applications of molecular markers and DNA sequences in identifying fungal pathogens of cool season grain legumes. In: Gherbawy, Y., Voigt, K. (eds), Molecular identification of fungi (pp 79-91). Heidelberg, Germany: Springer.

O’Sullivan, C.A., Belt, K., & Thatcher, L.F. (2021). Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Frontiers in Plant Science, 12, 707509.

Peltier, A.J., Bradley, C.A., Chilvers, M.I., Malvick, D.K., Mueller, D.S., Wise, K.A., & Esker, P.D. (2012). Biology, yield loss and control of Sclerotinia stem rot of soybean. Journal of Integrated Pest Management, 3(2), 1-7.

Powers, K S., Steadman, J.R., Higgins, B.S., & Powers, T.O. (2001). Intraspecific variation within North American Sclerotinia trifoliorum isolates characterized by nuclear small subunit rDNA introns. In: C.S. Young, and K.J.D. Hughes (eds), Proceedings Sclerotinia 2001 - XI International Sclerotinia Workshop. York, UK: Central Science Laboratory.

Porter, I., Pung, H., Villalta, O., Crnov, R., & Stewart, A. (2002). Development of biological controls for Sclerotinia diseases of horticultural crops in Australasia. In: 2nd Australasian Lettuce Industry Conference, University of Queensland, Gatton Campus.

Prior, G.D., & Owen, J.H. (1964). Pathological anatomy of Sclerotinia trifoliorum on clover alfaalfa. Phytopathology, 54(7), 784.

Purdy, L.H. (1979). Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875.

Rather, R.A., Ahanger, F.A., Ahanger, S.A., Basu, U., Wani, M.A., Rashid, Z. … Mushtaq, M. (2022). Morphocultural and pathogenic variability of Sclerotinia sclerotiorum causing white mold of common beans in temperate climate. Journal of Fungi, 8(7), 755.

Rothmann, L.A., & McLaren, N.W. (2018). Sclerotinia sclerotiorum disease prediction: A review and potential applications in South Africa. South African Journal of Science, 114(3-4), 1-9.

Saharan, G.S., & Mehta, N. (2008). Sclerotinia diseases of crop plants: Biology, ecology and disease management. Berlin, Germany: Springer Science & Business Media.

Sharma, P., Meena, P. D., Kumar, A., Kumar, V., & Singh, D. (2015). Forewarning models for Sclerotinia rot (Sclerotinia sclerotiorum) in Indian mustard (Brassica juncea L.). Phytoparasitica, 43(4), 509-516.

Smith, D.L., Garrison, M.C., Hollowell, J.E., Isleib, T.G., & Shew, B.B. (2008). Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Protection, 27(3-5), 823–833.

Staats, M., van Baarlen, P., & van Kan, J. A. (2005). Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution, 22(2), 333-346.

Subbarao, K.V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82(10), 1068-1078.

Tančić, S., Dedić, B., Jocić, S., Balalić, I., Lačok, N., Miladinović, D., & Miklič, V. (2011). Sclerotinia wilt occurrence on sunflower in Vojvodina, Serbia. Ratarstvo i povrtarstvo, 48(2), 353-358.

Tariq, V.N., Gutteridge, C.S., & Jeffries, P. (1985). Comparative studies of cultural and biochemical characteristics used for distinguishing species within Sclerotinia. Transactions of the British Mycological Society, 84(3), 381-397.

Team of Editors (2022). Pesticidi u poljoprivredi i šumarstvu u Srbiji (Pesticides in agriculture and forestry in Serbia) (20th updated ed.). Belgrade: Plant Protection Society of Serbia.

Tian, B., Xie, J., Fu, Y., Cheng, J., Li, B. O., Chen, T., Zhao, Y., Gao, Z., Yang, P., Bartetti, M.J., Tyler, B.M. & Jiang, D. (2020). A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. The ISME Journal, 14(12), 3120-3135.

Uhm, J.Y., & Fujii, H. (1983). Heterothallism and mating type mutation in Sclerotinia trifoliorum. Phytopathology, 73(4), 569-572.

Uloth, M., You, M.P., Finnegan, P.M., Banga, S.S., Yi, H., & Barbetti, M.J. (2014). Seedling resistance to Sclerotinia sclerotiorum as expressed across diverse cruciferous species. Plant Disease, 98(2), 184-190.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10.

Wang, Y., Duan, Y.B., & Zhou, M.G. (2015). Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorum. Plant Pathology, 64(1), 101-108.

Watson, A. (2007). Sclerotinia minor - biocontrol target or agent?. In: Vurro, M., Gressel, J. (eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp 205-211). Netherlands: Springer.

White, T.J., Bruns, T., Lee, S., &Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J., and White, T.J. (eds.), PCR protocols: A guide to methods and applications (pp 315-322). San Diego, CA, USA: Academic Press.

Webster, R.W., Mueller, B., Chilvers, M.I., Byrne, A., Boyse, J.F., Widdicombe, W.W. … Smith, D.L. (2023). Integrating seeding rates and pesticide programs for managing Sclerotinia stem rot in Glycine max with nitrogen fertilizer applications. Plant Health Progress, 24(3), 320-325.

Willbur, J.F., Ding, S., Marks, M.E., Lucas, H., Grau, C.R., Groves, C.L., & Smith, D.L. (2017). Comprehensive sclerotinia stem rot screening of soybean germplasm requires multiple isolates of Sclerotinia sclerotiorum. Plant Disease, 101(2), 344-353.

Willbur, J., McCaghey, M., Kabbage, M., & Smith, D.L. (2019). An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies. Tropical Plant Pathology, 44(1), 3-11.

Willetts, H.J., & Wong, J.A.L. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Botanical Review, 46(2), 101-165.

Wong, A.L., & Willetts, H.J. (1975). Electrophoretic studies of Australasian, North American and European isolates of Sclerotinia sclerotiorum and related species. Journal of General Microbiology, 90(2), 355-359.

Wu, B.M., Peng, Y.L., Qin, Q.M., & Subbarao, K.V. (2007). Incubation of excised apothecia enhances ascus maturation of Sclerotinia sclerotiorum. Mycologia, 99(1), 33-41.

Xie, J., & Jiang, D. (2014). New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annual Review of Phytopathology, 52, 45-68.

Xu, C., Liang, X., Hou, Y., & Zhou, M. (2015). Effects of the novel fungicide benzothiostrobin on Sclerotinia sclerotiorum in the laboratory and on Sclerotinia stem rot in rape fields. Plant Disease, 99(7), 969-975.

Young, C.S., Clarkson, J.P., Smith, J.A., Watling, M., Phelps, K., & Whipps, J.M. (2004). Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce. Plant Pathology, 53(4), 387-397.

Yu, X., Li, B., Fu, Y., Xie, J., Cheng, J., Ghabrial, S.A., Li, G., Yi, X., & Jiang, D. (2013). Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1452-1457.

Zhang, H., Cheng, Q., Wang, X., Jia, W., Xie, J., Fan, G., Han, C., & Zhao, X. (2022). Selenium improved phenylacetic acid content in oilseed rape and thus enhanced the prevention of Sclerotinia sclerotiorum by dimethachlon. Journal of Fungi, 8(11), 1193.

Published
2023/12/29
Section
Review Paper