Interactions among biocontrol agents in the management of Lycoriella ingenua and Trichoderma aggressivum on white button mushrooms
Abstract
Relationships (synergistic/antagonistic/additive) among three biocontrol agents — the native antagonistic bacterium Bacillus amyloliquefaciens B-241, the yield-stimulating actinobacterium Streptomyces flavovirens A06, and a commercial strain of entomopathogenic nematode Steinernema feltiae — were investigated for the purpose of evaluating their effects on the suppression of artificially inoculated green mould disease agent Trichoderma aggressivum f. europaeum T77, as well as the suppression of natural infestation of the fungus gnat, Lycoriella ingenua, in an experimental growing chamber of cultivated white button mushroom Agaricus bisporus. Biocontrol agents were applied at standard application rates, or reduced rates of 40% or 20%. The impact of biocontrol agents and their interactions on mushroom productivity was calculated as the ratio of the fresh weight of the total mushroom yield to the weight of the dry spawned substrate. The density of the fungus gnat flies was monitored by using yellow sticky traps placed inside each insect-rearing cage with mushroom substrate. The evaluation of disease and pest control efficacy was based on disease and pest incidence in the inoculated control and treatment groups. Simultaneous application of three biocontrol agents revealed mild antagonistic interactions in their efficacy in green mould disease control, an antagonistic relationship in the control of the fungus gnat, while synergy was detected regarding their impact on mushroom yield. The results of this study suggest that each biological agent should be applied three times every seven days to provide efficient pest and disease control: entomopathogenic nematodes used individually at the first day after the casing time (S. feltiae 0.75 × 106 IJ m-2, total amount 2.25 × 106 IJ m-2), and beneficial microorganisms used combined a few days later (B. amyloliquefaciens 1 × 109 CFU ml-1 m-2, total amount 3 × 109 CFU ml-1 m-2, and S. flavovirens 1 × 108 CFU ml-1 m-2, total amount 3 × 108 CFU ml-1 m-2).
References
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a
Burns, K.C. (1999). Compatibility of the entomopathogenic nematode, Steinernema carpocapsae, with Bacillus spp. used in the biological control of plant pathogens. (Master's Thesis). Knoxville, TN, USA: University of Tennessee. Retrieved from https://trace.tennessee.edu/utk_gradthes/6709
Caldas, C., Cherqui, A., Pereira, A., & Simões, N. (2002). Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Applied and Environmental Microbiology, 68(3), 1297–1304. DOI: https://doi.org/10.1128/AEM.68.3.1297-1304.2002
Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famaxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016
Clarke, J., Grogan, H., Fitzpatrick, D., & Kavanagh, K. (2022). Characterising the proteomic response of mushroom pathogen Lecanicillium fungicola to Bacillus velezensis QST 713 and Kos biocontrol agents. European Journal of Plant Pathology, 163, 369-379. DOI: https://doi.org/10.1007/s10658-022-02482-1
Coles, P.S., & Berber, W. (2002). Cultural control. In Mushroom integrated pest management handbook (pp. 27-32). University Park, PA, USA: The Pennsylvania State University, Penn State College of Agricultural Sciences; AMI. Retrieved from http://www.cas.psu.edu
Drobnjaković, T., Marčić, D., Potočnik, I., Rekanović, E., Prijović, M., Milijašević-Marčić, S., & Stepanović, M. (2019). Control of mushroom sciarid fly Lycoriella ingenua (Dufour) with an azadirachtin-based insecticide. Pesticides and Phytomedicine, 34(2), 111-121. DOI: https://doi.org/10.2298/PIF1902111D
Drobnjaković, T., Grujić, N., Luković, J., Anđelković, N., Potočnik, I., Milijašević-Marčić, S. Šantrić, Lj., Popović, A., & Marčić, D. (2025). Potential of Steinernema feltiae (Nematoda: Steinernematidae) native populations in the biocontrol of Lycoriella ingenua (Diptera: Sciaridae) and their impact on mushroom production. Agriculture, 15(5), 537. DOI: https://doi.org/10.3390/agriculture15050537
El-Ashry, R.M., & El-Marzoky, A.M. (2018). Compatibility of entomopathogenic nematodes, Heterorhabditis bacteriophora Poinar and Steinernema carpocapsae Weiser with some chemical and biopesticides. Zagazig Journal of Agricultural Research, 45(3), 905-916. DOI: https://doi.org/10.21608/ZJAR.2018.49129
Fatimah, N., Askary, T.H., & Abd-Elgawad, M.M.M. (2025). Factors influencing the performance of entomopathogenic nematodes: from laboratory to field conditions. Egypt Journal of Biological Pest Control, 35, 29. DOI: https://doi.org/10.1186/s41938-025-00864-1
Furgani, G., Böszörményi, E., Fodor, A., Máthé-Fodor, A., Forst, S., Hogan, J. S., Katona, Z., Klein, M.G., Stackebrandt, E., Szentirmai, A., Sztaricskai, F., & Wolf, S.L. (2008). Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. Journal of Applied Microbiology, 104(3), 745–758. DOI: https://doi.org/10.1111/j.1365-2672.2007.03613.x
Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x
Grewal, P., & Hand, P. (1992). Effects of bacteria isolated from a saprophagous rhabditid nematode Caenorhabditis elegans on the mycelial growth of Agaricus bisporus. Journal of Applied Microbiology, 72(3), 173-179. DOI: https://doi.org/10.1111/j.1365-2672.1992.tb01820.x
Jess, S., Schweizer, H., & Kilpatrick, M. (2005). Mushroom applications. In Grewal, P.S., Ehlers, R.-U., & Shapiro-Ilan, D.I. (Eds.). Nematodes as biocontrol agents (pp. 191- 213). Wallingford, UK: CABI Publishing. DOI: https://doi.org/10.1079/9780851990170.0191
Keil, C.B. (2002). Arthropod pests. Pest species biology and control. In Mushroom integrated pest management handbook (pp. 47–51). University Park, PA, USA: The Pennsylvania State University, Penn State College of Agricultural Sciences; AMI. Retrieved from www.americanmushroom.org/clientuploads/IPM/mushroomIPMhandbook.pdf
Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048
Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323
McGee, C.F. (2017). Microbial ecology of the Agaricus bisporus mushroom cropping process. Applied Microbiology and Biotechnology, 102(3), 1075-1083. DOI: https://doi.org/10.1007/s00253-017-8683-9
Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3
Milijašević-Marčić, S., Šantrić, Lj., Luković, J., Potočnik, I., Grujić, N., Drobnjaković, T., & Marčić, D. (2024). Altering microbial communities in substrate to stimulate the growth of healthy button mushrooms. Agriculture, 14(7), 1152. DOI: https://doi.org/10.3390/agriculture14071152
Menzel, F., & Мohrig, W. (1999). Revision der paläarktischen Trauermücken (Diptera: Sciaridae) [A revision of the Palaearctic black fungus gnats (Diptera: Sciaridae )]. In Stark, A., & Menzel, F. (Eds.). Studia Dipterologica – Suppl.6 (pp. 1-761). Halle an der Saale, Germany: Ampyx-Verlag. [In German]
Potočnik, I., Šantrić, Lj., Luković, J., Grujić, N., Anđelković, N., Majić, I., Drobnjaković, T., Marčić, D., & Milijašević-Marčić, S. (2025). Discovering ecological interactions between biocontrol bacterial strains and entomopathogenic nematodes in button mushroom production. Microorganisms, 13(3), 505. DOI: https://doi.org/10.3390/microorganisms13030505
Půža, V., & Tarasco, E. (2023). Interactions between entomopathogenic fungi and entomopathogenic nematodes. Microorganisms, 11(1), 163. DOI: https://doi.org/10.3390/microorganisms11010163
Richer, D.L. (1987). Synergism – A patent view. Pesticide Science, 19(4), 309-315. DOI: https://doi.org/10.1002/ps.2780190408
Rijal, R., Maity, P., & Kumar, A. (2021). Pests of mushroom and their ecological management strategies: A review. Biological Forum – An International Journal, 13(1), 375-387.
Rinker, D.L., Olthof, Th.H.A., Dano, J., & Alm, G. (1995). Effects of entomopathogenic nematodes on control of a mushroom-infesting sciarid fly and on mushroom production. Biocontrol Science and Technology, 5(1), 109–120. DOI: https://doi.org/10.1080/09583159550040051
Sharma, H.S.S., Lyons, G., & Chambers, J. (2000). Comparison of the changes in mushroom (Agaricus bisporus) compost during windrow and bunker stages of phase I and II. Annals of Applied Biolоgy, 136(1), 59-68. DOI: https://doi.org/10.1111/j.1744-7348.2000.tb00009.x
Shi, D., An, R., Zhang, W., Zhang, G., & Yu, Z. (2017). Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 65(1), 60–65. DOI: https://doi.org/10.1021/acs.jafc.6b04303
Stanojević, O., Milijašević-Marčić, S., Potočnik, I., Stepanović, M., Dimkić, I., Stanković, S., & Berić, T. (2016). Isolation and identification of Bacillus spp. from compost material, compost and mushroom casing soil active against Trichoderma spp. Archives of Biological Sciences, 68(4), 845-852. DOI: https://doi.org/10.2298/ABS151104073S
Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944
StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com
Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. DOI: https://doi.org/10.1111/j.1365-2958.2005.04587.x
Šantrić, Lj., Potočnik, I., Radivojević, Lj., Gajić Umiljendić, J., Rekanović, E., Duduk, B., & Milijašević-Marčić, S. (2018). Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 53(10), 677-684. DOI: https://doi.org/10.1080/03601234.2018.1474559
Xu, X.-M., Jeffries, P., Pautasso, M., & Jeger, M.J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101(9), 1024-1031. DOI: https://doi.org/10.1094/PHYTO-08-10-0216
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original.
Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Pesticidi i fitomedicina (Pesticides and Phytomedicine) and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
