Interakcije između bioloških agenasa u zaštiti šampinjona od najznačajnijih bolesti i štetočina

  • Jelena Luković Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Svetlana Milijašević-Marčić Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Ljiljana Šantrić Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Tanja Drobnjaković Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Nikola Anđelković Poljoprivredni fakultet, Univerzitet u Beogradu, Beograd-Zemun
  • Nikola Grujić Poljoprivredni fakultet, Univerzitet u Beogradu, Beograd-Zemun
  • Ivana Potočnik Institut za pesticide i životnu sredinu
Ključne reči: jestive gljive, entomopatogene nematode, korisni mikroorganizmi, zaštita od štetočina, zaštita od bolesti

Sažetak


Ispitivani su međusobni odnosi (sinergistički/antagonistički/aditivni) između tri biološka agensa: domaćih sojeva antagonističke bakterije Bacillus amyloliquefaciens B-241 i stimulatora prinosa, aktinobakterije Streptomyces flavovirens A06, kao i komercijalnog soja entomopatogene nematode Steinernema feltiae. Posmatran je uticaj interakcija datih bioloških agenasa na efikasnost u suzbijanju prouzrokovača bolesti zelene plesni Trichoderma aggressivum f. europaeum T77 (veštačka inokulacija), kao i u suzbijanju šampinjonske mušice Lycoriella ingenua (prirodna infestacija) u oglednom gajilištu šampinjona, Agaricus bisporus. Biološki agensi su primenjeni u standardnoj dozi, kao i u redukovanim dozama primene od 40% ili 20%. Uticaj na prinos šampinjona je izračunat kao odnos sveže mase ubranih šampinjona i suve mase komposta zasejanog micelijom šampinjona. Efikasnost u suzbijanju prouzrokovača bolesti šampinjona je procenjena na osnovu odnosa pojave i intenziteta bolesti, u inokulisanoj kontroli i tretmanima. Brojnost šampinjonske mušice je praćena korišćenjem žutih lepljivih traka koje su postavljene u kaveze za gajenje insekata sa supstratom za gajenje šampinjona. Prilikom trostruke primene bioloških agenasa, utvrđena je blaga antagonistička reakcija u njihovoj efikasnosti u suzbijanju prouzrokovača bolesti zelene plesni, antagonistička u suzbijanju šampinjonske mušice, i sinergistička u povećanju prinosa. Na osnovu dobijenih rezultata, biološke agense bi trebalo primeniti tri puta na sedam dana: entomopatogene nematode pojedinačno na početku ciklusa gajenja šampinjona (S. feltiae 0,75 × 106 IJ m-2; ukupna količina 2,25 × 106 IJ m-2), korisne mikroorganizme kombinovano nakon nekoliko dana (B. amyloliquefaciens 1 × 109 CFU ml-1 m-2; ukupna količina 3 × 109 CFU ml-1 m-2) i S. flavovirens 1 × 108 CFU ml-1 m-2; ukupna količina 3 × 108 CFU ml-1 m-2).

Reference

Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Burns, K.C. (1999). Compatibility of the entomopathogenic nematode, Steinernema carpocapsae, with Bacillus spp. used in the biological control of plant pathogens. (Master's Thesis). Knoxville, TN, USA: University of Tennessee. Retrieved from https://trace.tennessee.edu/utk_gradthes/6709

Caldas, C., Cherqui, A., Pereira, A., & Simões, N. (2002). Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Applied and Environmental Microbiology, 68(3), 1297–1304. DOI: https://doi.org/10.1128/AEM.68.3.1297-1304.2002

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famaxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016

Clarke, J., Grogan, H., Fitzpatrick, D., & Kavanagh, K. (2022). Characterising the proteomic response of mushroom pathogen Lecanicillium fungicola to Bacillus velezensis QST 713 and Kos biocontrol agents. European Journal of Plant Pathology, 163, 369-379. DOI: https://doi.org/10.1007/s10658-022-02482-1

Coles, P.S., & Berber, W. (2002). Cultural control. In Mushroom integrated pest management handbook (pp. 27-32). University Park, PA, USA: The Pennsylvania State University, Penn State College of Agricultural Sciences; AMI. Retrieved from http://www.cas.psu.edu

Drobnjaković, T., Marčić, D., Potočnik, I., Rekanović, E., Prijović, M., Milijašević-Marčić, S., & Stepanović, M. (2019). Control of mushroom sciarid fly Lycoriella ingenua (Dufour) with an azadirachtin-based insecticide. Pesticides and Phytomedicine, 34(2), 111-121. DOI: https://doi.org/10.2298/PIF1902111D

Drobnjaković, T., Grujić, N., Luković, J., Anđelković, N., Potočnik, I., Milijašević-Marčić, S. Šantrić, Lj., Popović, A., & Marčić, D. (2025). Potential of Steinernema feltiae (Nematoda: Steinernematidae) native populations in the biocontrol of Lycoriella ingenua (Diptera: Sciaridae) and their impact on mushroom production. Agriculture, 15(5), 537. DOI: https://doi.org/10.3390/agriculture15050537

El-Ashry, R.M., & El-Marzoky, A.M. (2018). Compatibility of entomopathogenic nematodes, Heterorhabditis bacteriophora Poinar and Steinernema carpocapsae Weiser with some chemical and biopesticides. Zagazig Journal of Agricultural Research, 45(3), 905-916. DOI: https://doi.org/10.21608/ZJAR.2018.49129

Fatimah, N., Askary, T.H., & Abd-Elgawad, M.M.M. (2025). Factors influencing the performance of entomopathogenic nematodes: from laboratory to field conditions. Egypt Journal of Biological Pest Control, 35, 29. DOI: https://doi.org/10.1186/s41938-025-00864-1

Furgani, G., Böszörményi, E., Fodor, A., Máthé-Fodor, A., Forst, S., Hogan, J. S., Katona, Z., Klein, M.G., Stackebrandt, E., Szentirmai, A., Sztaricskai, F., & Wolf, S.L. (2008). Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. Journal of Applied Microbiology, 104(3), 745–758. DOI: https://doi.org/10.1111/j.1365-2672.2007.03613.x

Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x

Grewal, P., & Hand, P. (1992). Effects of bacteria isolated from a saprophagous rhabditid nematode Caenorhabditis elegans on the mycelial growth of Agaricus bisporus. Journal of Applied Microbiology, 72(3), 173-179. DOI: https://doi.org/10.1111/j.1365-2672.1992.tb01820.x

Jess, S., Schweizer, H., & Kilpatrick, M. (2005). Mushroom applications. In Grewal, P.S., Ehlers, R.-U., & Shapiro-Ilan, D.I. (Eds.). Nematodes as biocontrol agents (pp. 191- 213). Wallingford, UK: CABI Publishing. DOI: https://doi.org/10.1079/9780851990170.0191

Keil, C.B. (2002). Arthropod pests. Pest species biology and control. In Mushroom integrated pest management handbook (pp. 47–51). University Park, PA, USA: The Pennsylvania State University, Penn State College of Agricultural Sciences; AMI. Retrieved from www.americanmushroom.org/clientuploads/IPM/mushroomIPMhandbook.pdf

Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048

Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323

McGee, C.F. (2017). Microbial ecology of the Agaricus bisporus mushroom cropping process. Applied Microbiology and Biotechnology, 102(3), 1075-1083. DOI: https://doi.org/10.1007/s00253-017-8683-9

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3

Milijašević-Marčić, S., Šantrić, Lj., Luković, J., Potočnik, I., Grujić, N., Drobnjaković, T., & Marčić, D. (2024). Altering microbial communities in substrate to stimulate the growth of healthy button mushrooms. Agriculture, 14(7), 1152. DOI: https://doi.org/10.3390/agriculture14071152

Menzel, F., & Мohrig, W. (1999). Revision der paläarktischen Trauermücken (Diptera: Sciaridae) [A revision of the Palaearctic black fungus gnats (Diptera: Sciaridae )]. In Stark, A., & Menzel, F. (Eds.). Studia Dipterologica – Suppl.6 (pp. 1-761). Halle an der Saale, Germany: Ampyx-Verlag. [In German]

Potočnik, I., Šantrić, Lj., Luković, J., Grujić, N., Anđelković, N., Majić, I., Drobnjaković, T., Marčić, D., & Milijašević-Marčić, S. (2025). Discovering ecological interactions between biocontrol bacterial strains and entomopathogenic nematodes in button mushroom production. Microorganisms, 13(3), 505. DOI: https://doi.org/10.3390/microorganisms13030505

Půža, V., & Tarasco, E. (2023). Interactions between entomopathogenic fungi and entomopathogenic nematodes. Microorganisms, 11(1), 163. DOI: https://doi.org/10.3390/microorganisms11010163

Richer, D.L. (1987). Synergism – A patent view. Pesticide Science, 19(4), 309-315. DOI: https://doi.org/10.1002/ps.2780190408

Rijal, R., Maity, P., & Kumar, A. (2021). Pests of mushroom and their ecological management strategies: A review. Biological Forum – An International Journal, 13(1), 375-387.

Rinker, D.L., Olthof, Th.H.A., Dano, J., & Alm, G. (1995). Effects of entomopathogenic nematodes on control of a mushroom-infesting sciarid fly and on mushroom production. Biocontrol Science and Technology, 5(1), 109–120. DOI: https://doi.org/10.1080/09583159550040051

Sharma, H.S.S., Lyons, G., & Chambers, J. (2000). Comparison of the changes in mushroom (Agaricus bisporus) compost during windrow and bunker stages of phase I and II. Annals of Applied Biolоgy, 136(1), 59-68. DOI: https://doi.org/10.1111/j.1744-7348.2000.tb00009.x

Shi, D., An, R., Zhang, W., Zhang, G., & Yu, Z. (2017). Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 65(1), 60–65. DOI: https://doi.org/10.1021/acs.jafc.6b04303

Stanojević, O., Milijašević-Marčić, S., Potočnik, I., Stepanović, M., Dimkić, I., Stanković, S., & Berić, T. (2016). Isolation and identification of Bacillus spp. from compost material, compost and mushroom casing soil active against Trichoderma spp. Archives of Biological Sciences, 68(4), 845-852. DOI: https://doi.org/10.2298/ABS151104073S

Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944

StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com

Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. DOI: https://doi.org/10.1111/j.1365-2958.2005.04587.x

Šantrić, Lj., Potočnik, I., Radivojević, Lj., Gajić Umiljendić, J., Rekanović, E., Duduk, B., & Milijašević-Marčić, S. (2018). Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 53(10), 677-684. DOI: https://doi.org/10.1080/03601234.2018.1474559

Xu, X.-M., Jeffries, P., Pautasso, M., & Jeger, M.J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101(9), 1024-1031. DOI: https://doi.org/10.1094/PHYTO-08-10-0216

Objavljeno
2026/02/09
Kako citirati
Luković, J., Milijašević-Marčić, S., Šantrić, L., Drobnjaković, T., Anđelković, N., Grujić, N., & Potočnik, I. (2026). Interakcije između bioloških agenasa u zaštiti šampinjona od najznačajnijih bolesti i štetočina . Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 40(2-3), 51-62. https://doi.org/10.2298/PIF2503051L
Rubrika
Originalni naučni članak