Efficacy of biofungicide Bacillus subtilis Ch-13 in the suppression of Hypomyces odoratus (cobweb disease) in a large-scale white button mushroom production

  • Biljana Todorović Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Svetlana Milijašević-Marčić Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Ljiljana Šantrić Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Jelena Luković Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Emil Rekanović Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Ivana Potočnik Institut za pesticide i životnu sredinu
Keywords: edible mushrooms, biocontrol agent, disease control

Abstract


More frequent application of the biofungicide Bacillus subtilis Ch-13 enhanced its efficacy against natural infestation of Hypomyces odoratus (cobweb disease) in white button mushrooms (Agaricus bisporus), as well as its positive impact on mushroom production. In two different application procedures, strain B. subtilis Ch-13 was used at a final concentration of 60 ml per m2 of casing layer (1 × 108 CFU ml-1). In comparison to the low efficacy of the fungicide prochloraz (53%), optimal efficacy of B. subtilis Ch-13 in the suppression of H. odoratus was recorded. Substantially higher efficacy of this biofungicide in cobweb disease control was achieved when it was applied in three split doses (42%), rather than two (30%), in the large-scale production of white button mushrooms. The greatest improvement in white button mushroom production, in comparison to the untreated control, was achieved when B. subtilis Ch-13 was applied in three split doses (biological efficiency, BE=15%), rather than two (BE=7%). For suppression of the mycopathogen H. odoratus on white button mushrooms, this study supports the application of the biofungicide B. subtilis Ch-13 in three split doses of 30 + 15 + 15 ml m-2 on the second day after casing, two weeks after casing, and after the first fruiting flush, respectively.

References

Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Australian Pesticides and Veterinary Medicines Authority (APVMA). (2025). Retrieved from https://portal.apvma.gov.au/es/permits

Back, C.-G., Kim, Y.-H., Jo, W.-S., Chung, H., & Jung, H.-Y. (2010). Cobweb disease on Agaricus bisporus caused by Cladobotryum mycophilum in Korea. Journal of Plant Pathology, 76(3), 232-235. DOI: https://doi.org/10.1007/s10327-010-0236-3

Beyer, D.M., & Kremser, I.J. (2004). Evaluation of fungicide tolerance and control for three fungal diseases of mushrooms. In Romaine, C.P., Keil, C.B., Rinker, D.L., & Royse, D.J. (Eds.). Mushroom Science XVI, Proceedings of the XVI International Congress on the Science and Cultivation of Edible and Medicinal Fungi, Miami, USA, March 14-17, 2004 (pp 521-529). Philadelphia, PA, USA: Pennsylvania State University Press.

Büchner, R., Vörös, M., Allaga, H., Varga, A., Bartal, A., Szekeres, A., Varga, S., Bajzát, J., Bakos-Barczi, N., Misz, A., Csutorás, C., Hatvani, L., Vágvölgyi, C., & Kredics, L. (2022). Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy, 12(2), 467. DOI: https://doi.org/10.3390/agronomy12020467

Carrasco, J., Navarro, M.J., Santos, M., Diánez, F., & Gea, F.J. (2016). Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Annals of Applied Biology, 168(2), 214-224. DOI: https://doi: 10.1111/aab.12257

Carrasco, J., Navarro, M.J., & Gea, F.J. (2017a). Cobweb, a serious pathology in mushroom crops: A review. Spanish Journal of Agricultural Research, 15(2), e10R01. DOI: https://doi.org/10.5424/sjar/2017152-10143

Carrasco, J., Navarro, M.J., Santos, M., & Gea, F.J. (2017b). Effect of five fungicides with different modes of action on mushroom cobweb disease (Cladobotryum mycophilum) and mushroom yield. Annals of Applied Biology, 171(1), 62-69. DOI: https://doi.org/10.1111/aab.12352

Chakwiya, A., Van der Linde, E.J., & Korsten, L. (2015). In vitro sensitivity testing of Cladobotryum mycophilum to carbendazim and prochloraz manganese. South African Journal of Science, 111(11/12), 1-7. DOI: https://doi.org/10.17159/sajs.2015/20140408

Chakwiya, A., Van der Linde, E.J., Chidamba, L., & Korsten, L. (2019). Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the South African mushroom industry. European Journal of Plant Pathology, 154, 767-776. DOI: https://doi.org/10.1007/s10658-019-01700-7

Challen, M.P., & Elliott, T.J. (1985). The in vitro responses to a range of fungicides of two strains of the mushroom Agaricus bisporus and the pathogen Verticillium fungicola. Mycopathologia, 90, 161-164. DOI: https://doi.org/10.1007/BF00436732

Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations. Applied Biochemistry and Microbiology, 45(4), 465-469. DOI: https://doi.org/10.1016/j.micres.2006.04.001

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016

Clarke, J., McGuinness, B., Fitzpatrick, D., Kavanagh, K., & Grogan, H. (2024). Response of the mushroom pathogen Cladobotryum mycophilum to the fungicides prochloraz and metrafenone and two Bacillus-based biological control agents in mushroom crop trials. Crop Protection, 177, 106530. DOI: https://doi.org/10.1016/j.cropro.2023.106530

European and Mediterranean Plant Protection Organization (EPPO). (2010). Efficacy evaluation of fungicides: Fungal diseases on cultivated mushrooms of Agaricus spp. PP 1/270(1) in EPPO Standards. OEPP/EPPO Bulletin, 40(3), 270-273. DOI: https://doi.org/10.1111/j.1365-2338.2010.02384.x

Fletcher, J.T. (2002). Cobweb disease, a new challenge. Pest Control (Mushroom News), 50, 20-23.

Food and Drug Administration (FDA). (1999). Code of Federal Regulations, Title 21: Food and drugs. In: Chapter 1: Food and Drug Administration Department of Health and Human Services, Part 184: Direct food substances affirmed as Generally Recognized as Safe (pp. 892-896). Washington, D.C., USA: US Government Printing Office.

Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x

Gea, F.J., Tello, J.C., & Navarro, M.J. (2010). Efficacy and effect on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29(9), 1021-1025. DOI: https://doi.org/10.1016/j.cropro.2010.06.006

Gea, F.J., Navarro, M.J., Carrasco, J., González, A.J., & Suz, L.M. (2012). First report of cobweb on white button mushroom (Agaricus bisporus) in Spain caused by Cladobotryum mycophilum. Plant Disease, 96(7), 1067. DOI: https://doi.org/10.1094/PDIS-02-12-0120-PDN

Grogan, H.M., Keeling, C., & Jukes, A.A. (2000). In vitro response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In The BCPC 2000, Proceedings of the British Crop Protection Conference – Pests & Diseases, Brighton, UK, November 13-16, 2000 (pp 273-278). Farnham, UK: British Crop Protection Council.

Grogan, H.M. (2006). Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Management Science, 62(2), 153-161. DOI: https://doi.org/10.1002/ps.1133

Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Journal of Agricultural Faculty of Uludag University, 29(1), 19-28. DOI: https://dergipark.org.tr/tr/download/article-file/154225

Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048

Liu, C., Sheng, J., Chen, L., Zhen, Y., Lee, D.Y.W., Yang, Y., Xu, M., & Shen, L. (2015). Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. Journal of Agriculture and Food Chemistry, 63(26), 6009-6018. DOI: https://doi.org/10.1021/acs.jafc.5b02218

Luković, J., Milijašević-Marčić, S., Hatvani, L., Kredics, L., Szűcs, A., Vágvölgyi, C., Duduk, N., Vico, I., & Potočnik, I. (2021). Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. Journal of Environmental Science and Health, Part B, 56(1), 54-63. DOI: https://doi.org/10.1080/03601234.2020.1838821

Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323

McKay, G.J., Egan, D., Morris, E., Scott, C., & Brown, A.E. (1999). Genetic and morphological characterization of Cladobotryum species causing cobweb disease of mushrooms. Applied and Environmental Microbiology, 65(2), 606-610. DOI: https://doi.org/10.1128/aem.65.2.606-610.1999

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3

Muhammad, I., Sossah, F.L., Yang, Y., Li, D., Li, S., Fu, Y., & Li, Y. (2019). Identification of resistance to cobweb disease caused by Cladobotryum mycophilum in wild and cultivated strains of Agaricus bisporus and screening for bioactive botanicals. RSC Advances, 9(26), 14758-14765. DOI: https://doi.org/10.1039/c9ra00632j

Navarro, M.J., Santos, M., Dianez, F., & Gea, F.J. (2023). Chemical and biological control of wet bubble disease (Hypomyces perniciosus) in mushroom crops. Agronomy, 13(7), 1672. DOI: https://doi.org/10.3390/agronomy13071672

Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of Bacillus subtilis QST 713 mushroom grain spawn treatment on yield and green mould control. Pesticides and Phytomedicine, 33(3-4), 205-211. DOI: https://doi.org./10.2298/PIF1804205P

Potočnik, I., Rekanović, E., Todorović, B., Luković, J., Paunović, D., Stanojević, O., & Milijašević-Marčić, S. (2019). The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pesticides and Phytomedicine, 34(1), 53-60. DOI: https://doi.org/10.2298/PIF1901053P

Potočnik, I., Todorović, B., Milijašević-Marčić, S., Luković, J., Kanižai Šarić, G., Majić, I., & Rekanović, E. (2021). A large-scale study on the effectiveness of a Bacillus subtilis Ch-13-based biofungicide against green mould disease and mushroom yield improvement. Pesticides and Phytomedicine, 36(2), 83-90. DOI: https://doi.org/10.2298/PIF2102083P

Regnier, T., & Combrinck, S. (2010). In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. South African Journal of Botany, 76(4), 681-685. DOI: https://doi.org/10.1016/j.sajb.2010.07.018

Shi, N., Ruan, H., Jie, Y., Chen, F., & Du, Y. (2020). Sensitivity and efficacy of fungicides against wet bubble disease of Agaricus bisporus caused by Mycogone perniciosa. European Journal of Plant Pathology, 157(4), 873-885. DOI: https://doi.org/10.1007/s10658-020-02047-0

Ślusarski, C., Uliński, Z., Szumigaj-Tarnowska, J., & Miszczak, A. (2012). Preliminary appraisal of the new preparations for protection of the white button mushroom against fungal diseases. Progress in Plant Protection, 52(4), 1058-1063.

Sokal, R.R., & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, NY, USA: W.H. Freeman and Company.

Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944

StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com

Tamm, H., & Põldmaa, K. (2013). Diversity, host associations, and phylogeography of temperate aurofusarin-producing Hypomyces/Cladobotryum including causal agents of cobweb disease of cultivated mushrooms. Fungal Biology, 117(5), 348-367. DOI: https://doi.org/10.1016/j.funbio.2013.03.005

United States Environmental Protection Agency (US EPA). Grower resources. Integrated Pest Management. Pesticides. Fungicides. Retrieved from https://www.americanmushroom.org/integrated-pest-management/fungicides/

Published
2026/02/09
How to Cite
Todorović, B., Milijašević-Marčić, S., Šantrić, L., Luković, J., Rekanović, E., & Potočnik, I. (2026). Efficacy of biofungicide Bacillus subtilis Ch-13 in the suppression of Hypomyces odoratus (cobweb disease) in a large-scale white button mushroom production. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 40(2-3), 63-71. https://doi.org/10.2298/PIF2503063T
Section
Original Scientific Paper