Efikasnost biofungicida Bacillus subtilis Ch-13 u suzbijanju prouzrokovača paučinaste plesni (Hypomyces odoratus) u uslovima industrijske proizvodnje šampinjona

  • Biljana Todorović Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Svetlana Milijašević-Marčić Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Ljiljana Šantrić Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Jelena Luković Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Emil Rekanović Institut za pesticide i zaštitu životne sredine, Beograd-Zemun
  • Ivana Potočnik Institut za pesticide i životnu sredinu
Ključne reči: jestive gljive, agens biološke zaštite, zaštita od bolesti

Sažetak


Učestalija primena biofungicida Bacillus subtilis Ch-13 povećala je njegovu efikasnost u suzbijanju prirodne zaraze Hypomyces odoratus (paučinate plesni) i pozitivan uticaj na prinos šampinjona (Agaricus bisporus). Soj B. subtilis Ch-13 je bio primenjen u ukupnoj koncentraciji od 60 ml m-2 (1 × 108 CFU ml-1). Značajno veća efikasnost biofungicida u suzbijanju prouzrokovača paučinaste plesni je postignuta kada je primenjen u tri podeljene doze (42%), umesto u dve (30%), u uslovima industrijske proizvodnje šampinjona. Zadovoljavajuća efikasnost B. subtilis Ch-13 u suzbijanju H. odoratus je uočena u poređenju sa vrlo smanjenom efikasnošču fungicida prohloraza (53%). Najveće povećanje prinosa je zabeleženo kod primene B. subtilis Ch-13 u tri podeljene doze (15%), umesto u dve (7%), u poređenju sa netretiranom kontrolom. Može se preporučiti primena B. subtilis Ch-13 u tri podeljene doze: 30 + 15 +15 ml po m2 (drugog dana, dve nedelje nakon pokrivanja i posle prve berbe) u suzbijanju H. odoratus.

Reference

Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Australian Pesticides and Veterinary Medicines Authority (APVMA). (2025). Retrieved from https://portal.apvma.gov.au/es/permits

Back, C.-G., Kim, Y.-H., Jo, W.-S., Chung, H., & Jung, H.-Y. (2010). Cobweb disease on Agaricus bisporus caused by Cladobotryum mycophilum in Korea. Journal of Plant Pathology, 76(3), 232-235. DOI: https://doi.org/10.1007/s10327-010-0236-3

Beyer, D.M., & Kremser, I.J. (2004). Evaluation of fungicide tolerance and control for three fungal diseases of mushrooms. In Romaine, C.P., Keil, C.B., Rinker, D.L., & Royse, D.J. (Eds.). Mushroom Science XVI, Proceedings of the XVI International Congress on the Science and Cultivation of Edible and Medicinal Fungi, Miami, USA, March 14-17, 2004 (pp 521-529). Philadelphia, PA, USA: Pennsylvania State University Press.

Büchner, R., Vörös, M., Allaga, H., Varga, A., Bartal, A., Szekeres, A., Varga, S., Bajzát, J., Bakos-Barczi, N., Misz, A., Csutorás, C., Hatvani, L., Vágvölgyi, C., & Kredics, L. (2022). Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy, 12(2), 467. DOI: https://doi.org/10.3390/agronomy12020467

Carrasco, J., Navarro, M.J., Santos, M., Diánez, F., & Gea, F.J. (2016). Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Annals of Applied Biology, 168(2), 214-224. DOI: https://doi: 10.1111/aab.12257

Carrasco, J., Navarro, M.J., & Gea, F.J. (2017a). Cobweb, a serious pathology in mushroom crops: A review. Spanish Journal of Agricultural Research, 15(2), e10R01. DOI: https://doi.org/10.5424/sjar/2017152-10143

Carrasco, J., Navarro, M.J., Santos, M., & Gea, F.J. (2017b). Effect of five fungicides with different modes of action on mushroom cobweb disease (Cladobotryum mycophilum) and mushroom yield. Annals of Applied Biology, 171(1), 62-69. DOI: https://doi.org/10.1111/aab.12352

Chakwiya, A., Van der Linde, E.J., & Korsten, L. (2015). In vitro sensitivity testing of Cladobotryum mycophilum to carbendazim and prochloraz manganese. South African Journal of Science, 111(11/12), 1-7. DOI: https://doi.org/10.17159/sajs.2015/20140408

Chakwiya, A., Van der Linde, E.J., Chidamba, L., & Korsten, L. (2019). Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the South African mushroom industry. European Journal of Plant Pathology, 154, 767-776. DOI: https://doi.org/10.1007/s10658-019-01700-7

Challen, M.P., & Elliott, T.J. (1985). The in vitro responses to a range of fungicides of two strains of the mushroom Agaricus bisporus and the pathogen Verticillium fungicola. Mycopathologia, 90, 161-164. DOI: https://doi.org/10.1007/BF00436732

Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations. Applied Biochemistry and Microbiology, 45(4), 465-469. DOI: https://doi.org/10.1016/j.micres.2006.04.001

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016

Clarke, J., McGuinness, B., Fitzpatrick, D., Kavanagh, K., & Grogan, H. (2024). Response of the mushroom pathogen Cladobotryum mycophilum to the fungicides prochloraz and metrafenone and two Bacillus-based biological control agents in mushroom crop trials. Crop Protection, 177, 106530. DOI: https://doi.org/10.1016/j.cropro.2023.106530

European and Mediterranean Plant Protection Organization (EPPO). (2010). Efficacy evaluation of fungicides: Fungal diseases on cultivated mushrooms of Agaricus spp. PP 1/270(1) in EPPO Standards. OEPP/EPPO Bulletin, 40(3), 270-273. DOI: https://doi.org/10.1111/j.1365-2338.2010.02384.x

Fletcher, J.T. (2002). Cobweb disease, a new challenge. Pest Control (Mushroom News), 50, 20-23.

Food and Drug Administration (FDA). (1999). Code of Federal Regulations, Title 21: Food and drugs. In: Chapter 1: Food and Drug Administration Department of Health and Human Services, Part 184: Direct food substances affirmed as Generally Recognized as Safe (pp. 892-896). Washington, D.C., USA: US Government Printing Office.

Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x

Gea, F.J., Tello, J.C., & Navarro, M.J. (2010). Efficacy and effect on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29(9), 1021-1025. DOI: https://doi.org/10.1016/j.cropro.2010.06.006

Gea, F.J., Navarro, M.J., Carrasco, J., González, A.J., & Suz, L.M. (2012). First report of cobweb on white button mushroom (Agaricus bisporus) in Spain caused by Cladobotryum mycophilum. Plant Disease, 96(7), 1067. DOI: https://doi.org/10.1094/PDIS-02-12-0120-PDN

Grogan, H.M., Keeling, C., & Jukes, A.A. (2000). In vitro response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In The BCPC 2000, Proceedings of the British Crop Protection Conference – Pests & Diseases, Brighton, UK, November 13-16, 2000 (pp 273-278). Farnham, UK: British Crop Protection Council.

Grogan, H.M. (2006). Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Management Science, 62(2), 153-161. DOI: https://doi.org/10.1002/ps.1133

Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Journal of Agricultural Faculty of Uludag University, 29(1), 19-28. DOI: https://dergipark.org.tr/tr/download/article-file/154225

Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048

Liu, C., Sheng, J., Chen, L., Zhen, Y., Lee, D.Y.W., Yang, Y., Xu, M., & Shen, L. (2015). Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. Journal of Agriculture and Food Chemistry, 63(26), 6009-6018. DOI: https://doi.org/10.1021/acs.jafc.5b02218

Luković, J., Milijašević-Marčić, S., Hatvani, L., Kredics, L., Szűcs, A., Vágvölgyi, C., Duduk, N., Vico, I., & Potočnik, I. (2021). Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. Journal of Environmental Science and Health, Part B, 56(1), 54-63. DOI: https://doi.org/10.1080/03601234.2020.1838821

Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323

McKay, G.J., Egan, D., Morris, E., Scott, C., & Brown, A.E. (1999). Genetic and morphological characterization of Cladobotryum species causing cobweb disease of mushrooms. Applied and Environmental Microbiology, 65(2), 606-610. DOI: https://doi.org/10.1128/aem.65.2.606-610.1999

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3

Muhammad, I., Sossah, F.L., Yang, Y., Li, D., Li, S., Fu, Y., & Li, Y. (2019). Identification of resistance to cobweb disease caused by Cladobotryum mycophilum in wild and cultivated strains of Agaricus bisporus and screening for bioactive botanicals. RSC Advances, 9(26), 14758-14765. DOI: https://doi.org/10.1039/c9ra00632j

Navarro, M.J., Santos, M., Dianez, F., & Gea, F.J. (2023). Chemical and biological control of wet bubble disease (Hypomyces perniciosus) in mushroom crops. Agronomy, 13(7), 1672. DOI: https://doi.org/10.3390/agronomy13071672

Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of Bacillus subtilis QST 713 mushroom grain spawn treatment on yield and green mould control. Pesticides and Phytomedicine, 33(3-4), 205-211. DOI: https://doi.org./10.2298/PIF1804205P

Potočnik, I., Rekanović, E., Todorović, B., Luković, J., Paunović, D., Stanojević, O., & Milijašević-Marčić, S. (2019). The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pesticides and Phytomedicine, 34(1), 53-60. DOI: https://doi.org/10.2298/PIF1901053P

Potočnik, I., Todorović, B., Milijašević-Marčić, S., Luković, J., Kanižai Šarić, G., Majić, I., & Rekanović, E. (2021). A large-scale study on the effectiveness of a Bacillus subtilis Ch-13-based biofungicide against green mould disease and mushroom yield improvement. Pesticides and Phytomedicine, 36(2), 83-90. DOI: https://doi.org/10.2298/PIF2102083P

Regnier, T., & Combrinck, S. (2010). In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. South African Journal of Botany, 76(4), 681-685. DOI: https://doi.org/10.1016/j.sajb.2010.07.018

Shi, N., Ruan, H., Jie, Y., Chen, F., & Du, Y. (2020). Sensitivity and efficacy of fungicides against wet bubble disease of Agaricus bisporus caused by Mycogone perniciosa. European Journal of Plant Pathology, 157(4), 873-885. DOI: https://doi.org/10.1007/s10658-020-02047-0

Ślusarski, C., Uliński, Z., Szumigaj-Tarnowska, J., & Miszczak, A. (2012). Preliminary appraisal of the new preparations for protection of the white button mushroom against fungal diseases. Progress in Plant Protection, 52(4), 1058-1063.

Sokal, R.R., & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, NY, USA: W.H. Freeman and Company.

Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944

StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com

Tamm, H., & Põldmaa, K. (2013). Diversity, host associations, and phylogeography of temperate aurofusarin-producing Hypomyces/Cladobotryum including causal agents of cobweb disease of cultivated mushrooms. Fungal Biology, 117(5), 348-367. DOI: https://doi.org/10.1016/j.funbio.2013.03.005

United States Environmental Protection Agency (US EPA). Grower resources. Integrated Pest Management. Pesticides. Fungicides. Retrieved from https://www.americanmushroom.org/integrated-pest-management/fungicides/

Objavljeno
2026/02/09
Kako citirati
Todorović, B., Milijašević-Marčić, S., Šantrić, L., Luković, J., Rekanović, E., & Potočnik, I. (2026). Efikasnost biofungicida Bacillus subtilis Ch-13 u suzbijanju prouzrokovača paučinaste plesni (Hypomyces odoratus) u uslovima industrijske proizvodnje šampinjona . Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 40(2-3), 63-71. https://doi.org/10.2298/PIF2503063T
Rubrika
Originalni naučni članak