The effect of soil type on imazamox phytotoxicity to tomato

  • Jelena Gajic Umiljendic Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
  • Marija Sarić-Krsmanović Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
  • Ljiljana Šantrić Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
  • Ljiljana Radivojević Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
Keywords: Herbicides, Residues, Soils, Phytotoxicity, Tomatoes,

Abstract


A bioassay was performed to evaluate the susceptibility of tomato to imazamox residues in loamy and sandy soils. The effects of three different levels of soil moisture (20, 50 and 70% FWC) were also examined. Imazamox was applied at rates ranging from 6.25 to 800 μg a.i./kg soil. Shoot and root fresh weight and root length were the parameters measured 21 days after treatment, as well as the content of water soluble proteins.
Imazamox caused growth delay and lower protein contents in both types of soil at all levels of soil moisture, and the degree of change depended on application rates. Inhibition was higher in plants grown in the sandy soil. The root parameters were more reliable as indicators of plant sensitivity to imazamox in soil. Soluble protein contents were lower in all trial variants but the changes did not depend on herbicide concentrations.

References

Alister, C. & Kogan, M. (2005). Efficacy of imidazolinone herbicides applied to imidazolinone-resistant maize and their carryover on rotational crops. Crop Protection, 24(4), 375-379. doi: 10.1016/j.cropro.2004.09.011

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.

Bresnahan, G., Dexter, A., Koskinen, W. & Lueschen, W. (2002). Influence of soil pH-sorption interactions on the carry-over of fresh and aged soil residues of imazamox. Weed Research, 42(1), 45–51. doi:10.1046/j.1365-3180.2002.00261.x

Colquhoun, J., Mallory-Smith, C. and Ball, D. (2003). Weed management in Clearfield™ wheat with imazamox. Oregon State University, Extension Service, EM 8833. Retrieved from http://cropandsoil.oregonstate.edu/wheat/reports/ORCF_weed_mgt.pdf

Deeds, Z.A., Al-Khatib, K., Peterson, D.E. & Stahlman, Ph.W. (2006). Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technology, 20(1), 23-31. doi: 10.1614/WT-04-273R.1

European Commission (2002). Imazamox. final review report for the active substance imazamox (SANCO/4325/2000). Brussels, Belgium: EC Health and Consumer Protection Directorate.

Gaston, S., Zabalza, A., Gonzalez, E.M., Arrese-Igor, C. , Apa r icio-Tejo, M.P. & Royuela, M. (2002). Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants. Physiologia plantarum, 114(4), 524-532. pmid:11975725. doi:10.1034/j.1399-3054.2002.1140404.x

Greenland, R.G. (2003). Injury to vegetable crops from herbicides applied in previous years. Weed Technology, 17(1), 73-78.

Janjić, V. (2005). Fitofarmacija. Beograd-Banja Luka, Srbija-R. Srpska: Društvo za zaštitu bilja Srbije, Institut za istraživanja u poljoprivredi „Srbija”, Poljoprivredni fakultet Banja Luka.

Janjić, V. & Elezović, I. (Eds.). (2010). Pesticidi u poljoprivredi i šumarstvu u Srbiji. Beograd, Srbija: Društvo za zaštitu bilja Srbije.

Johnson, D.H., Shaner, D.L., Deane, J., Mackersie, L.A. & Tuxhorn, G. (2000). Time-dependent adsorption of imazethapyr to soil. Weed Science, 48(6), 769-775.

Kah, M., Beulke, S. & Brown, B.A. (2007). Factors influencing degradation of pesticides in soil. Journal of Agricultural and Food Chemistry, 55(11), 4487-4492. doi: 10.1021/jf0635356

Kah, M. & Brown, C.D. (2006). Adsorption of ionisable pesticides in soil. Reviews of Environmental Contamination and Toxicology, 188, 149-217.

Onofri, A. (2005). BIOASSAY97: a new EXCELョ VBA macro to perform statistical analyses on pesticide dose-response data. Rivista Italiana di Agrometeorologia, 3, 40-45.

O’Sullivan, J., Thomas, R.J. & Bouw, W.J. (1998). Effect of imazethapyr and imazamox soil residues on several vegetable crops grown in Ontario. Canadian Journal of Plant Science, 78(4), 647-651. doi: 10.4141/P97-127

Pannacci, E., Onofri, A. & Covarelli, G. (2006). Biological activity, availability and duration of phytotoxicity for imazamox in four different soils of central Italy. Weed Research, 46(3), 243-250. doi:10.1111/j.1365-3180.2006.00503.x

Regitano, J.B., da Rocha, W.S.D. & Alleoni, L.R.F. (2005). Soil pH on mobility of imazaquin in Oxisols with positive balance of charges. Journal of Agricultural and Food Chemistry, 53(10), 4096-4102. pmid:15884845, doi:10.1021/jf0480501

Richards, L.A. (1965). Physical conditions of water in soil. In Black, C.A.(Ed.), Methods of soil analysis (pp.128-152). Madison, WI: ASTM.

Shaner, D.L. (1991). Physiological effects of imidazolinone herbicides. In D.L. Shaner & S.L. O’Connor (Eds.), The imidazolinone herbicides (pp.125-138). Boca Raton, FL, USA: CRC Press.

Shaner, D.L. & Reider, M.L. (1986). Physiological response of corn (Zea mays) to AC 243,997 in combination with valine, leucine and isoleucine. Pesticide Biochemistry and Physiology, 25(2), 248-257.

Stidham, M.A. (1991). Herbicides that inhibit acetohydroxyacid synthase. Weed Science, 39(3), 428-434.

Stidham, M.A. & Singh, B.K. (1991). Imidazolinoneacetohydroxyacid synthase nteractions In D.L. Shaner & S.L. O’Connor (Eds.), The imidazolinone herbicides (pp. 71-90). Boca Raton, FL, USA: CRC Press.

Süzer, S. & Büyük, H. (2010). Residual effects of spraying imidazolinone-family herbicides on Clearfieldョ sunflower production from the point of view of crop rotation. Helia, 33(52), 25-36. pmid:15237957, doi: 10.2298/HEL1052025S

Tranel, P.J. & Wright, T.R. (2002). Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Science, 50, 700-712.

Undabeytia, T., Sanchez-Verdejo, T., Morillo, E. & Maqueda, C. (2004). Effect of organic amendments on the retention and mobility of imazaqiun in soils. Journal of Agricultural and Food Chemistry, 52(14), 4493-4500. doi: 10.1021/jf0496043

Vischetti, C., Casucci, C. & Perucci, P. (2002). Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Biology and Fertility of Soils, 35(1), 13-17. doi:10.1007/s00374-001-0433-5

Published
2016/02/18
Section
Original Scientific Paper