Allelopathic tolerance of pea cultivars to Sorghum halepense L. (Pers.) extracts

  • Natalia Georgieva Institute of Forage Crops, 89 General Vladimir Vazov Str., Pleven
  • Ivelina Nikolova Institute of Forage Crops, 89 General Vladimir Vazov Str., Pleven
Keywords: Allelopathy, Sorghum halepense, Pea, Germination, Growth,

Abstract


In order to evaluate the allelopathic effect of Sorghum halepense extracts on germination and initial growth of six pea (Pisum sativum subsp. sativum, Pisum sativum subsp. arvense) cultivars and to identify tolerant cultivars, a laboratory experiment was conducted. The studied cultivars revealed different levels of susceptibility to allelopathic impact of root and aboveground biomass extracts of S. halepense. Root growth parameters (length and weight) of the pea cultivars exhibited greater susceptibility to weed extracts than stem parameters. The inhibitory effects of the extracts on germ length of P. sativum ranged from 1.4% (cultivar Mir) to 45.0% (Kamerton), on germ weight – from 3.5% (Pleven 4) to 42.9% (K-80), and on seed germination – from 11.8% (Mir) to 31.3% (K-80). Total inhibitory effect, i.e. the impact of S. halepense extracts on all studied parameters of P. sativum, revealed that the cultivars Mir and Pleven 4 were the most tolerant. Growing such cultivars may reduce weed damage. Low tolerance was manifested by the cultivar K-80, while Modus, Glyans and Kamerton ranked intermediate. The cultivars with large-size seeds or lower grain protein content were more affected by the depressing effect of S. halepense extracts.

 

References

Ahmed, T., Kostadinova, P., & Stancheva, A. (2001). Allelopathic interactions between weeds and crops. Scientific Works (Bulgaria), 1(1), 369-374.

Alsaadawi, I.S., & Dayan, F.E. (2009). Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopathy Journal, 24(2), 255-270.

Alsaadawi, I.S., Sarbout, A.K., & Al-Shamma, L.M. (2012). Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. Archives of Agronomy and Soil Science, 58(10), 1139-1148. doi:10.1080/03650340.2011.570335

An, M., Pratley, J.E., & Haig, T. (1998). Allelopathy: From concept to reality. In L. Michalk & J.A.M. Holtum (Eds.), Proceedings of the 9th Australian Agronomy Conference (pp 563-566). Wagga Wagga, Australia: Australian Agronomy Society..

Aryakia, E., Naghavi, M.R., Farahmand, Z., & Shahzadeh Fazeli, S.A.H. (2015). Evaluating allelopathic effects of some plant species in tissue culture media as an accurate method for selection of tolerant plant and screening of bioherbicides. Journal of Agricultural Science and Technology, 17(4), 1011-1023.

Baličević, R., Ravlić, M., Gorički, I., & Ravlić, I. (2013). Allelopathic effect of Polygonum lapathifolium L. on germination and initial growth of soybean. In I. Jug & B. Đurđević (Eds.), Proceedings and abstracts of the 6th International Scientific/Professional Conference „Agriculture in Nature and Environment Protection“

(pp 99-103). Osijek, Croatia: Glas Slavonije.

Baličević, R., Ravlić, M., Knežević, M., & Serezlija, I. (2014). Allelopathic effect of field bindweed (Convolvulus arvensis L.) water extracts on germination and initial growth of maize. Journal of Animal and Plant Sciences, 24(6), 1844-1848.

Bashir, U., Javaid, A., & Bajwa, R. (2012). Allelopathic effects of sunflower residue on growth of rice and subsequent wheat crop. Chilean Journal of Agricultural Research, 72(3), 326-331. doi.org/10.4067/S0718-58392012000300004

Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K., & Gawronski, S.W. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum, 50(1), 156-158. doi:10.1007/s10535-005-0094-6

Chen, Y., Zhang, L., & Wang, J. (2011). Effects of coumarin application on plant growth and nitrogen metabolism in leaves of Medicago sativa. Allelopathy Journal, 28(1), 105-114.

Ebana, K., Yan, W., Dilday, R.H., Namai, H., & Okuno, K. (2001). Variation in the allelopathic effect of rice with water soluble extracts. Agronomy Journal, 93(1), 12-16. doi:10.2134/agronj2001.93112x

Einhellig, F.A. (1986). Mechanisms and modes of action of allelochemicals. In A.R. Putnam & C.S. Tang (Eds.), The science of allelopathy (pp 171-187). New York: John Wiley & Sons.

Elisante, F., Tarimo, M.T., & Ndakidemi, P.A. (2013). Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchiris ciliaris and Neonotonia wightii. American Journal of Plant Sciences, 4(12), 2332-2339. doi: 10.4236/ajps.2013.412289

Filippovich, Y.B. (1999). Fundamentals of biochemistry, 4th ed. Moskow, Russia: Agar Press.

Georgieva, N., Kertikov, T., & Ilieva, A. (2008). Alelopatichno vliyanie na ekstrakti ot zimen fii varhu kalnyaemostta i parvonachalnoto razvitie na semena ot raj, pshenica i oves. (Allelopathic effect of extracts from winter vetch (Vicia villosa Roth.) on germination and initial development of rye, wheat and oat seeds. Selskostopanska nauka (Agricultural Science, Bulgaria), 3(1), 14-20.

Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T., Hack, H., & Stauss, R. (1997). Use of the extended BBCH scale: General for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Research, 37(6), 433-441. doi:10.1046/j.1365-3180.1997.d01-70.x

Hristoskov, A. (2013). Spread, damage and possibilities for control of Sorghum halepense L. Pers in medium early and late potatoes. Plovdiv, Bulgaria: Agricultural University.

Iman, A., Wahab, Z., Rastan, S.O.S., & Halim, M.R.A. (2006). Allelopathic effect of sweet corn and vegetable soybean extracts at two growth stages on germination and seedling growth of corn and soybean varieties. Journal of Agronomy, 5(1), 62-68. doi:10.3923/ja.2006.62.68

Kalinova, S.T., Hristova, S., & Glogova, L. (2012).Vliyanie na zaplevelyavaneto s balur varhu dobiva i strukturnite elementi na tsarevica KN-613 (Effect of Johngrasses Sorghum halepense on yield and yield components of maize KN-613). Nauka i technologii (Science & Technologies, Bulgaria), 2(6), 141-145.

Kuang, Y., Liang, Y.K., Yang, S.X., Liu, L., & Wang, Z.K. (2014). Allelopathic effects of Pleioblastus kongosanensis f. aureostriaus on germination and growth of Vigna radiate. Allelopathy Journal, 33(1), 77-82.

Lyubenov, Y. (1984). Plevelite – vragove i priyateli na choveka (Weeds: Enemies and friends of man). Sofia, Bulgaria: Zemizdat Press.

Marinov-Serafimov, P., Dimitrova, T., & Golubinova, I. (2007). Study of water imbibing capacity of some legume crops under in vitro conditions in allelopathic research. Herbologia, 8(2), 29-39.

Norsworthy, J.K. (2003). Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technology, 17(2), 307-313. doi: 10.1614/0890-037X(2003)017[0307:APOWRR]2.0.CO

Qasem, J.R. (1995). The allelopathic effect of three Amaranthus spp. (pigweeds) on wheat (Triticum durum). Weed Research, 35(1), 41-49. doi:10.1111/j.1365-3180.1995.tb02015.x

Ray, H., & Hastings, P.J. (1992). Variation within flax (Linum usitatissimum) and barley (Hordeum vulgare) in response to allelopathic chemicals. Theoretical and Applied Genetics, 84(3-4), 460-465. pmid:24203208

Rice, E. (1995). Biological control of weeds and plant diseases: Advances in applied allelopathy. Norman, OK: University of Oklahoma Press.

Rice, E.L. (1984). Allelopathy, 2nd ed. London, UK: Academic Press.

Sahoo, U.K., Jeeceelee, L., Vanlalhriatpuia, K., Upadhyaya, K., & Lalremruati, J.H. (2010). Allellopathic effects of leaf leachate of Mangifera indica L. on initial growth parameters of a few home garden food crops. World Applied Sciences Journal, 10(12), 1438-1447.

Sari, M., Akar, F., & Karatas, F. (1999). Determination of cyanide levels in Sorghum halepense at different vegetation stages in the Aydin area. Turkish Journal of Veterinary and Animal Sciences, 23(2), 381-384.

Shahrokhi, S., Nahideh-Hejazi, S., Khodabandeh, H., Farboodi, M., & Faramarzi, A. (2011). Allelopathic effect of aqueous extracts of pigweed, Amaranthus retroflexus L. organs on germination and growth of five barley cultivars. In Proceedings of 3rd International Conference on Chemical, Biological and Environmental Engineering, Singapore (pp. 80-84).

Shang, Z.H., & Xu, S.G. (2012). Allelopathic testing of Pedicularis kansuensis (Scrophulariaceae) on seed germination and seedling growth of two native grasses in the Tibetan plateau. Fyton, 81, 75-79.

Stoimenova, I., Mikova, A., & Aleksieva, S. (2008). Rolyata na alelopatiyata i zaplevelyavaneto na posevite pri otglejdane na selskostopanskite kulturi. (The role of allelopathy and weed infestation of crops in crop management. Selskostopanska nauka Agricultural Science, Bulgaria), 3(1), 3-13.

Tonev, T., Krasteva, H., Bakardjieva, N., Milanova, S., Zarkov, B., Tsankova, G., & Grigorova, P. (2008). Handbook for integrated pest management in cereals. Sofia, Bulgaria: Ministry of Agriculture and Food.

Treber, I., Baličević, R., & Ravlić, M. (2015). Assessment of allelopathic effect of pale persicaria on two soybean cultivars. Herbologia, 15(1), 31-38. doi 10.5644/Herb.15.1.04

Verma, M., & Rao, P.B. (2006). Allelopathic effect of four weed species extracts on germination, growth and protein in different varieties of Glycine max (L.) Merrill. Journal of Environmental Biology, 27(3), 571-577. pmid:17402252.

Yang, R.Y., Mei, L.X., Tang, I., & Chen, X. (2007). Allelopathic effects of invasive Solidago canadensis L. on germination and growth of native Chinese plant species. Allelopathy Journal, 19(1), 241-247.

Published
2016/06/24
Section
Original Scientific Paper