Allelopathic tolerance of alfalfa (Medicago sativa L.) varieties to dodder (Cuscuta epithymum L.)

  • Plamen Marinov-Serafimov Institute of Forage Crops, 89 Gen. Vladimir Vazov Str., Pleven 5800
  • Irena Golubinova Institute of Forage Crops, 89 Gen. Vladimir Vazov Str., Pleven 5800
  • Diana Marinova Institute of Agriculture and Seed Science „Obraztsov chiflik”, 1 Prof. Ivan Ivanov Str.,Ruse 7007
Keywords: Medicago sativa L., Cuscuta epithymum L., Allelopathy, Seed germination, Inhibition,

Abstract


Allelopathic effects of cold water extracts of Cuscuta epithymum L. on seed germination and initial development of Medicago sativa L. varieties were investigated under laboratory conditions at the Institute of Forage Crops, Pleven, during 2016-2017. It was found that the water extracts from dry biomass of C. epithymum had a considerably stronger inhibitory effect on the studied M. sativa varieties (IR 32.7-100.0 %), as compared to the extracts of fresh biomass (IR 0.2-40.5%). Depending on the kind of C. epithymum extract (fresh or dry parasitic weed biomass), IRs for seed germination of the tested M. sativa varieties could be conventionally classified into five groups: 1) seed germination stimulation, -1.4% – extracts from fresh biomass affecting the variety „Multifoliolate“; 2) seed germination inhibition of 0.1-10% – extracts prepared from fresh biomass affecting the varieties „Prista 3“, „Pleven 6“, „Prista 5“ and „Obnova“; 3) seed germination inhibition of 11-20% – extracts from fresh biomass affecting the varieties „Roly“ and „Victoria“; 4) seed germination inhibition of 30-45% – extracts from dry biomass affecting the variety „Multifoliolate“; 5) seed germination inhibition of 46-60% – extracts from dry biomass affecting the varieties „Prista 5“, „Prista 3“, „Victoria“, „Roly“, „Dara“, „Pleven 6“ and „Obnova“.

The varieties „Victoria“, „Prista 5“ and „Multifoliolate“ of M. sativa possess some allelopathic tolerance because their germination indexes (GI) range from 80.5 to 88.7 % for the extracts prepared from fresh weed biomass of C. epithymum, and from 47.1 to 48.6% for the extracts from dry weed biomass, compared to control treatment. These varieties can be used as components in future breeding programmes.

References

Ahn, J.K., & Chung, I.M. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyard grass. Agronomy Journal, 92, 1162-1167. doi:10.2134/agronj2000.9261162x

Baličević, R., Ravlić, M., Knežević, M., Marić, K., & Mikić, I. (2014). Effect of marigold (Calendula officinalis L.) cogermination, extracts and residues on weed species hoary cress (Cardaria draba (L.) Desv.). Herbologia, 14(1), 23-32. doi 10.5644/Herb.14.1.03

Bashir, U., Javaid, A., & Bajwa, R. (2011). Comparative tolerance of different rice varieties to sunflower phytotoxicity. Journal of Medicinal Plants Research, 5(26), 6243-6248. doi 10.5897/JMPR11.1143

Bashir, U., Javaid, A., & Bajwa, R. (2012). Allelopathic effects of sunf lower residue on growth of rice and subsequent wheat crop. Chilean Journal of Agricultural Research, 72(3), 326-331. doi.org/10.4067/S0718-58392012000300004

Bertholdsson, N.O., & Tuvesson, S. (2005). Possibilities to use marker assisted selection to improve allelopathic activity in cereals. In E.T. Lammerts van Bueren, I. Goldringer, H. Ostergard (eds.), Proceedings of the COST SUSVAR/ECO-PB Workshop on Organic Plant Breeding Strategies and the Use of Molecular Markers, (pp 67-71). Driebergen, The Netherlands: Louis Bolk Institute. Retrieved from http://www.louisbolk.org/downloads/1438.pdf

Cheng, F., & Cheng, Z., (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. Retrieved from https://doi. org/10.3389/fpls.2015.01020

Dhima, K., Vasilakoglou, I., Gatsis, T., Panou-Philotheou, E., & Eleftherohorinos, I. (2009). Effects of aromatic plants incorporated as green manure on weed and maize development. Field Crops Research, 110, 235-241. doi 10.1016/j.fcr.2008.09.005

Dimitrova, T. (2005). Prouchvane na plevelopodtiskashtata sposobnost na ljucernata, otglezhdana samostojatelno i v smeseni posevi (Study of weed inhibit the ability of alfalfa grown alone and in mixed crops). Rasteniev”dni nauki (Plant Science), 42(5), 461-468.

Dimitrova, T. (2008). A study of weed suppressive capacity of some cover crops as an alternative for weed control in lucerne (Medicago sativa L.). Herbologia, 9(1), 21-31. http://www.anubih.ba/images/publikacije/herbologia/herbologia_09_1.pdf

Dimitrova, T., & Marinov-Serafimov, P. (2007a). Ecological approach against invasion of johnsongrass (Sorghum halepense (L.) Pers.) through mixed stands of lucerne with perennial grasses. Herbologia, 8(2), 13-20. Retrieved from http://www.anubih.ba/images/publikacije/herbologia/herbologia_08_2.pdf

Dimitrova, T., & Serafimov, P. (2007b). Weed suppressive capacity of some perennial herbaceous mixtures – a possibility for nonchemical control of Canada thistle (Cirsium arvense L.). In A. De Vliegher and L. Carlier (eds.), Permanent and temporary grassland plant, environment and economy. Proceedings of the 14th Symposium of the European Grassland Federation (vol. 12, pp 134-137), Ghent, Belgium: EGF. http://www.europeangrassland.org/fileadmin/media/EGF2007_GSE_vol12.pdf

Faravani, M., Baki, H., & Khalijah, A. (2008). Assessment of allelopathic potential of Melastoma malabathricum L. on radish Raphanus sativus L. and barnyard grass (Echinochloa crus-galli). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36(2), 54-60. doi http://dx.doi.org/10.15835/nbha36269

Fragasso M., Iannucci A., & Papa R. (2013). Durum wheat and allelopathy: Toward wheat breeding for natural weed management. Frontiers in Plant Science, 4, 368-375. doi https://doi.org/10.3389/fpls.2013.00375

Gariglio, N.F., Buyatti, M.A., Pillati, R.A., Gozalez Russia, D.E., & Acosta, M.R. (2002). Use of a germination bioassay to test compost maturity of willow (Salix sp.) sawdust. New Zealand Journal of Crop and Horticultural Science, 30, 135-139. Retrieved from http://dx.doi.org/10.1080/01140671.2002.9514208

Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T. H., Hack, H., & Stauss, R. (1997). Use of the extended BBCH scale - general for the descriptions of the growth stages of mono; and dicotyledonous weed species. Weed Research, 37(6), 433-441. doi 10.1046/j.1365-3180.1997.d01-70.x

Hinkelman, K., & Kempthorne, O. (1994). Design and analysis of experiments. Volume I: Introduction to experimental design (p 495). New York, NY: John Wiley and Sons.

ISTA (International Seed Testing Association). (1985). International rules for seed testing. Seed Science and Technology, 13, 361-513.

Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Zahid A. Cheema, Muhammad Farooq, Abdul Wahid (eds.), Allelopathy (pp 349-385). Berlin Heidelberg, Germany: Springer.

Khanh, T.D., Cong, L.C., Xuan, T.D., Lee, S.J., Kong, D.S., & Chung, I.M. (2008). Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituents. Weed Science, 56(1), 119-127. doi http://dx.doi.org/10.1614/WS-07-102.1

Konstantinović, B, Blagojević, M., Konstantinović, B., & Samardžić, N. (2014). Allelopathic effect of weed species Amaranthus retroflexus L. on maize seed germination. Romanian Agricultural Research, 31, 315-321. Retrieved from http://www.incda-fundulea.ro/rar/nr31/rar31.38.pdf

Macias, F.A., Molinillo, J.M.G., Varela, R.M., & Galindo, J.C.G. (2007). Allelopathy - A natural alternative for weed control. Pest Management Science, 63(4), 327-348. pmid:17348068. doi:10.1002/ps.1342

Marinov-Serafimov, P., Dimitrova, Ts., Golubinova, I., & Ilieva, A. (2007). Study of suitability of some solutions in allelopathic researches. Herbologia, 8(1), 1-10. Retrieved from http://www.anubih.ba/images/publikacije/herbologia/herbologia_08_1.pdf

Masum S.M., Hossain, M.A., Akamine, H., Sakagami, J.I., & Bhowmik, P.C. (2016). Allelopathic potential of indigenous Bangladeshi rice varieties. Weed Biology and Management, 16(3),119–131. doi 10.1111/wbm.12103

Miralles, P., Johnson, E., Church, T.L., & Harris, A.T. (2012). Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake. Journal of the Royal Society Interface, 9(77), 3514–3527. doi 10.1098/rsif.2012.0535.

Mondal, Md.F., Asaduzzaman, Md., & Asao, T. (2015). Adverse effects of allelopathy from legume crops and its possible avoidance. American Journal of Plant Sciences, 6(6), 804-810. doi 10.4236/ajps.2015.66086

Nešić, M., Obratov-Petković, D., Skočajić, D., Bjedov, I., Đukić, M., & Đunisijević-Bojović, D. (2016). Allelopathic potential of the invasive species Aster lanceolatus Willd. Periodicum biologorum, 118(1), 1-7. doi http://dx.doi.org/10.18054/pb.v118i1.2816

Okuno, K., & Ebana, K. (2003). Identification of QTL controlling allelopathic effects in rice: Genetic approaches to biological control of weeds. Japan Agricultural Research Quarterly: JARQ, 37(2), 77-81. doi http://doi.org/10.6090/jarq.37.77

Othman, M.R, Leong, S.T., Bakar, B., Awang, K., & Annuar, M.S.M. (2012). Allelopathic potentials of Cuscuta campestris Yuncker extracts on germination and growth of radish (Raphanus sativus L.) and lettuce (Lactuca sativa L.). Journal of Agricultural Science, 4(9), 57-63. doi http://dx.doi.org/10.5539/jas.v4n9p57

Petrova, S.T., Valcheva, E.G., & Velcheva, I.G. (2015). A case study of allelopathic effect on weeds in wheat. Ecologia Balkanica, 7(1), 121-129. Retrieved from http://web.uni-plovdiv.bg/mollov/EB/2015_vol7_iss1/121-129_eb.15122.pdf

Qasem, J.R. (1995). Allelopathic effects of Amaranthus retroflexus and Chenopodium murale on vegetable crops. Allelopathy Journal, 2(1), 49-66. Retrieved from http://www.allelopathyjournal.org/Journal_Articles/AJ%202%20(1)%20January,%201995%20(49-66).pdf

Ravlić, M. (2016). Allelopathic effects of some plant species on growth and development of crops and weeds. Poljoprivreda, 22(1), 53-57. doi 10.18047/poljo.22.1.8

Ravlić, M., Baličević, R., Nikolić, M., & Sarajlić, A. (2016). Assessment of allelopathic potential of fennel, rue and sage on weed species hoary cress (Lepidium draba). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 48-52. doi http://dx.doi.org/10.15835/nbha44110097

Rice, E.L. (1995). Biological control of weeds and plant disease: Advances in applied allelopathy. Norman, Oklahoma: University of Oklahoma Press.

Seyyedi, M., Rezvani Moghaddam, P., Shahriari, R., Azad, M., & Eyshi Rezaei, E. (2013). Allelopathic potential of sunflower and caster bean on germination properties of dodder (Cuscuta compestris). African Journal of Agricultural Research, 8(7), 601-607. doi 10.5897/AJAR12.2136

Sisodia, S., & Siddiqui, M.B. (2010). Allelopathic effect by aqueous extracts of different parts of Croton bonplandianum Baill. on some crop and weed plants. Journal of Agricultural Extension and Rural Development, 2(1), 022-028. Retrieved from http://www.academicjournals.org/jaerd

Smith, J.D., Woldemariam, M.G., Mescher, M.C., Jander, G., & de Moraes, C.M. (2016). Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiology, 172(1), 181–197. pmid:27482077

Soltys, D., Gniazdowska, A., & Bogatek, R. (2013). Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production. Plant Signaling & Behavior, 8(5), e23994. doi 10.4161/psb.23994

Trezzi, M.M., Vidal, R.A., Balbinot Jr, A.A., von Hertwig Bittencourt, H. & da Silva Souza Filho, A.P. (2016). Allelopathy: Driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1), 53-60. doi 10.1080/17429145.2016.1159342

Yu, H., Liu, J., He, W.M., Miao, S.L., & Dong, M. (2011). Cuscuta australis restrains three exotic invasive plants and benefits native species. Biological Invasions, 13(3), 747-756. doi 10.1007/s10530-010-9865-x

Published
2017/06/05
Section
Original Scientific Paper