Fusarium species associated with wheat head blight disease in Algeria: characterization and effects of triazole fungicides
Behaviour of Fusarium head blight to triazole
Abstract
Fusarium head blight is an important disease of durum wheat which requires several fungicide treatments of seeds to achieve satisfactory control. The current study was carried out to evaluate commercially available fungicides in vitro for their efficacy against eighteen Fusarium spp. isolates collected from different fields in the north-eastern part of Algeria. The morphological and molecular characterization reveals the presence in wheat seeds of the main species complexes F. acuminatum, F. equiseti, F. avenaceum, F. solani, F. culomorum, F. incarnatum-equiseti, as well as F. tricinctum species complex and F. chlamydosporum species complex. Antifungal activity of fungicides shows that all triazoles tested have proven their effectiveness in inhibiting the mycelial growth of various strains of Fusarium tested. However, their sensitivity varies between them significantly (p<0.05) depending on the dose applied and period of exposure to each fungicide. The results showed that tebuconazole (Raxil and Tébuzole) and the combination fludioxonil + difenoconazole greatly reduced the mycelial growth of Fusarium isolates by 84.31%, 82.94%, 81.33%, respectively, as compared to difenoconazole alone (73.16%) at the recommended dose after five days of exposure. Regarding their effect on conidia germination, tebuconazole was more effective than fludioxonil + difenoconazole, which leads to deformation of cell wall structure and fragmentation of conidia. These results will provide useful information to select suitable fungicides for seed treatment and management of wheat head blight disease.
References
Abdallah-Nekache, N., Laraba I., Ducos, C., Barreau, C., Bouznad, Z., & Boureghda, H. (2019). Occurrence of Fusarium head blight and Fusarium crown rot in Algerian wheat: identification of associated species and assessment of aggressiveness. European Journal of Plant Pathology, 154(3), 499-512. https://doi.org/10.1007/s10658-019-01673-7
Askarne, L., Talibi, I., Boubaker, H., Boudyach, E.H., Msanda, F., Saadi, B... Ait Ben Aoumar, A. (2012). In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Protection, 40, 53-58. https://doi.org/10.1016/j.cropro.2012.04.023
Becher, R., Weihmann, F., Deising, H.B., & Wirsel, S.G.R. (2011). Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics, 12, 52. https://doi.org/10.1186/1471-2164-12-52
Bhimani, M.D., Golakiya, B.B., & Akbari, L.F. (2018). Evaluation of different fungicides against fenugreek wilt (Fusarium oxysporum Schlecht.). International Journal of Chemical Studies, 6(2), 29-34.
Bottalico, A., & Perrone, G. (2002). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 108(7), 611-624. https://doi.org/10.1023/A:1020635214971
Dahl, B., & Wilson, W.W. (2018). Risk premiums due to Fusarium head blight (FHB) in wheat and barley. Agricultural Systems, 162, 145-153. https://doi.org/10.1016/j.agsy.2018.01.025
Falcao, V.C.A., Ono, M.A., de Avila Miguel, T., Vizoni, E., Hirooka, E.Y., & Ono, E.Y.S. (2011). Fusarium verticillioides: evaluation of fumonisin production and effect of fungicides on in vitro inhibition of mycelia growth. Mycopathologia, 171, 77-84. https://doi.org/10.1007/s11046-010-9339-9
FAO (2022). Food and Agriculture Organization of the UN. World Food Situation. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 15 February 2022).
Godet, F., & Limpert, E. (1998). Recent evolution of multiple resistance of Blumeria (Erysiphe) graminis f.sp. tritici to selected DMI and morpholine fungicides in France. Pesticide Sciences, 54(3), 244-252. https://doi.org/10.1002/(SICI)1096-9063(1998110)54:3<244::AID-PS818>3.0.CO;2-8
Goswami, R.S., & Kistler, H.C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5(6), 515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
Gxasheka, M., Wang, J., Gunya, B., Mbanjwa, V., Tyasi, T.L., Dlamini, P., & Gao, J. (2021). In vitro effect of some commercial fungicides on mycelial growth of Fusarium species causing maize ear rot disease in China. Archives of Phytopathology and Plant Protection, 54(11-12), 557- 569. https://doi.org/10.1080/03235408.2020.1844531
Hadjout, S., Chereau, S., Mekliche, L., Marchegay, G., Ducos, C., Boureghda, H.... Richard-Forget, F. (2022). Molecular identification of some Fusarium isolates and their chemotypes involved in fusarium head blight on Durum wheat in Algeria. Archives of Phytopathology and Plant Protection, 55(4), 499-513. https://doi.org/10.1080/03235408.2022.2034363
Haidukowski, M., Visconti, A., Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L.... Pascale, M. (2012). Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheatunder field conditions. Phytopathologia Mediterranea, 51(1), 236-246. https://doi.org/10.14601/Phytopathol_Mediterr-9401
Hellin, P., King, R., Urban, M., Hammond-Kosack, K.E., & Legreve, A. (2018). The adaptation of Fusarium culmorum to DMI fungicides is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Frontiers in Microbiology, 9, 1385. https://doi.org/10.3389/fmicb.2018.01385
IBM (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Available at: https://hadoop.apache.org
Kazan, K., Gardiner, D.M., & Manners, J.M. (2012). On the trail of a serial killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 13(4), 399-413. https://doi.org/10.1111/j.1364-3703.2011.00762.x
Kim, J.H., Campbell, B.C., Mahoney, N., Chan, K.L., Molyneux, R.J., & May, G.S. (2007). Enhancement of fludioxonil fungicidal activity by disrupting cellular glutathione homeostasis with 2,5-dihydroxybenzoic acid. FEMS Microbiology Letters, 270(2), 284-290. https://doi.org/10.1111/j.1574-6968.2007.00682.x
Klix, M.B., Verreet, J.A., & Beyer, M. (2007). Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Protection, 26(4), 683-690. https://doi.org/10.1016/j.cropro.2006.06.006
Klosowski, A.C., Castellar, C., Stammler, G., & May De Mio, L.L. (2018). Fungicide sensitivity and monocyclic parameters related to the Phakopsora pachyrhizi–soybean pathosystem from organic and conventional soybean production systems. Plant Pathology, 67(8), 1697-1705. https://doi.org/10.1111/ppa.12883
Koller, W., Wilcox, W.F., Barnard, J., Jones, A.L., & Braun, P.G. (1997). Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology, 87(2), 184-190. https://doi.org/10.1094/PHYTO.1997.87.2.184
Kotowicz, N.K., Frac, M., & Lipiec, J. (2014). The importance of Fusarium fungi in wheat cultivation – pathogenicity and mycotoxins production: a review. Journal of Animal and Plant Sciences, 21(2), 3326-3343.
Laboratoire de la Sante des Vegetaux (LSV). (2008). Detection et identification des especes de Fusarium spp. et Microdochium nivale sur grains de cereales par isolement mycologique semi selectif et etude microbiologique. Ref. MH-03.16: version B. (LSV) - station de Malzeville, France, pp 1-25. (In French)
Leroux, P., Albertini, C., Gautier, A., Gredt, M., & Walker, A.S. (2007). Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 63(7), 688-698. https://doi.org/10.1002/ps.1390
Leslie, J.F., & Summerell, B.A. (2006). The Fusarium laboratory manual (p. 388). Ames, USA: Blackwell Publishing.
Li, X., Sheng, L., Sbodio, A.O., Zhang, Z., Sun, G., Blanco-Ulate, B., & Wang, L. (2022). Photodynamic control of fungicide-resistant Penicillium digitatum by vitamin K3 water-soluble analogue. Food Control, 135, 108807. https://doi.org/10.1016/j.foodcont.2021.108807
Liddell, C.M. (2003). Systematics of Fusarium species and allies associated with Fusarium head blight. In: K.J. Leonard and W.R. Bushnell, Fusarium head blight of wheat and barley (pp 35-43). St. Paul, MN, USA: American Phytopathological Society (APS Press).
Lu, X.H., Davis, R.M., Livingston, S., Nunez, J., & Hao, J.J. (2012). Fungicide sensitivity of Pythium spp. associated with cavity spot of carrot in California and Michigan. Plant Disease, 96(3), 384-388. http://dx.doi. org/10.1094/ PDIS-07-11-0562
Ma, Z., & Michailides, T.J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853-863. https://doi.org/10.1016/j.cropro.2005.01.011
Malbran, I., Mourelos, C.A., Pardi, M., Oufensou, S., Balmas, V., Delogu, G. … Girotti, J.R. (2020). Commercially available natural inhibitors of trichothecene production in Fusarium graminearum: A strategy to manage Fusarium head blight of wheat. Crop Protection, 138, 105313. https://doi.org/10.1016/j.cropro.2020.105313
Masiello, M., Somma, S., Ghionna, V., Logrieco, A.F., & Moretti, A. (2019). In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins, 11(1), 11. https://doi.org/10.3390/toxins11010011
Mateo, E.M., Valle-Algarra, F.M., Mateo, R., Jimenez, M., & Magan, N. (2011). Effect of fenpropimorph, prochloraz and tebuconazole on growth and production of T-2 and HT-2 toxins by Fusarium langsethiae in oat-based medium. International Journal of Food Microbiology, 151(3), 289-298. https://doi.org/10.1016/j.ijfoodmicro.2011.09.017
Mateo, E.M., Valle-Algarra, F.M., Jimenez, M., & Magan, N. (2013). Impact of three sterol-biosynthesis inhibitors on growth of Fusarium langsethiae and on T-2 and HT-2 toxin production in oat grain under different ecological conditions. Food Control, 34(2), 521-529. https://doi.org/10.1016/j.foodcont.2013.05.011
Mavroeidi, V.I., & Shaw, M.W. (2005). Sensitivity distributions and cross-resistance patterns of Mycosphaerella graminicola to f luquinconazole, prochloraz and azoxystrobin over a period of 9 years. Crop Protection, 24(3), 259-266. https://doi.org/10.1016/j.cropro.2004.07.014
Nakajima, T. (2010). Fungicides application against Fusarium head blight in wheat and barley for ensuring food safety. In O. Carisse, Fungicides (pp 140-156). London, UK: Intech Open. https://doi.org/10.5772/13680
Nene, Y.L., & Thapliyal, P.N. (1993). Fungicides in plant disease control. New Delhi, India: Oxford and IBH Publication Company.
Nielsen, L.K., Jensen, J.D., Nielsen, G.C., Jensen, J.E., Spliid, N.H., Thomsen, I.K. ... Jorgensen, L.N. (2011). Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology, 101(8), 960-969. https://doi.org/10.1094/PHYTO-07-10-0188
O’Donnell, K., Kistler, H.C., Tacke, B.K., & Casper, H.H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the U.S.A, 97(14), 7905-7910. https://doi.org/10.1073/pnas.130193297
O’Donnell, K., Ward, T.J., Geiser, D.M., Kistler, H.C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41(6), 600-623. https://doi.org/10.1016/j.fgb.2004.03.003
Ochiai, N., Fujimura, M., Oshima, M., Motoyama, T., Ichiishi, A., Yamada-Okabe, H., & Yamaguchi, I. (2002). Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Bioscience, Biotechnology, and Biochemistry, 66(10), 2209-2215. https://doi.org/10.1271/bbb.66.2209
Paul, P.A., Lipps, P.E., Hershman, D.E., McMullen, M.P., Draper, M.A., & Madden, L.V. (2008). Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate metaanalysis. Phytopathology, 98(9), 999-1011. https://doi.org/10.1094/PHYTO-98-9-0999
Paul, P.A., McMullen, M.P., Hershman, D.E., & Madden, L.V. (2010). Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by Fusarium head blight intensity. Phytopathology, 100(2), 160-171. https://doi.org/10.1094/PHYTO-100-2-0160
Pereira, C.B., Ward, T.J., Del Ponte, E.M., Mara Moreira, G., Busman, M., McCormick, S.P. ... Tessmann, D.J. (2021). Five-year survey uncovers extensive diversity and temporal fluctuations among Fusarium head blight pathogens of wheat and barley in Brazil. Plant Pathology, 70(2), 426-435. https://doi.org/10.1111/ppa.13289
Petronaitis, T., Simpfendorfer, S. & Huberli, D. (2021). Importance of Fusarium spp. in wheat to food security: A global perspective. In P.R. Strange, L. Korsten & M. Lodovica Gullino (Eds.), Plant diseases and food security in the 21st century (pp 127-159). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-57899-2_7
Proctor, R.H., McCormick, S.P., Alexander, N.J., & Desjardins, A.E. (2009). Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Molecular Microbiology, 74(5), 1128-1142. https://doi.org/10.1111/j.1365 2958.2009. 06927.x
Ramirez, M.L., Chulze, S., & Magan, N. (2004). Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Protection, 23(2), 117-125. https://doi.org/10.1016/j.cropro.2003.07.005
Rojas, E.C., Jensen, B., Jorgensen, H.J.L., Latz, M.A.C, Esteban, P., Ding, Y., & Collinge, D.B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144, 104222. https://doi.org/10.1016/j.biocontrol.2020.104222
Rosslenbroich, H.J., & Stuebler, D. (2000). Botrytis cinereahistory of chemical control and novel fungicides for its management. Crop Protection, 19(8–10), 557-561. https://doi.org/10.1016/S0261-2194(00)00072-7
Sharifi, K., Zare, R., Zamanizadeh, H.R., Mirabolfathy, M., & Rezaee, S. (2016). Identification of Fusarium species associated with Fusarium head blight of wheat in the North of Iran and phylogenetic analysis of the dominant species. Rostaniha, 17(2), 173-187. https://doi.org/10.22092/botany.2017.109430
Shcherbakova, L., Odintsova, T., Pasechnik, T., Arslanova, L., Smetanina, T., Kartashov, M,, & Dzhavakhiya, V. (2020). Fragments of a wheat hevein-like antimicrobial peptide augment the inhibitory effect of a triazole fungicide on spore germination of Fusarium oxysporum and Alternaria solani. Antibiotics, 9(12), 870. https://doi.org/10.3390/antibiotics9120870
Shikur Gebremariam, E., Sharma-Poudyal, D., Paulitz, T.C., Erginbas-Orakci, G., Karakaya, A., & Dababat, A.A. (2018). Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey. European Journal of Plant Pathology, 150(2), 387-399. https://doi.org/10.1007/s10658-017-1285-7
Stehmann, C., & De Waard, M.A. (1996). Sensitivity of populations of Botrytis cinerea to triazoles, benomyl and vinclozolin. European Journal of Plant Pathology, 102, 171-180. https://doi.org/10.1007/BF01877104
Su, Y.Y., Qi, Y.L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195-200. Doi: 10.1080/21501203.2012.719042
Suty-Heinze, A., & Dutzmann, S. (2004). Fusarium head blight: an additional strength of prothioconazole. Pflanzenschutz-Nachrichten Bayer, 57(2), 265-282.
Tittlemeier, S.A., Roscoe, M., Trelka, R., Gaba, D., Chan, J.M., Patrick, S.K. ... Grafenhan, T. (2013). Fusarium damage in small cereal grains from Western Canada. 2. Occurrence of Fusarium toxins and their source organisms in durum wheat harvested in 2010. Journal of Agricultural and Food Chemistry, 61(23), 5438-5448. https://doi.org/10.1021/jf400652e
Ueda, A., Nishimoto, H., Kato, N., Hirano, T., & Fukaya, M. (2007). Lineages and trichothecene mycotoxin types of Fusarium head blight pathogens of wheat and barley in Tokai district. Research Bulletin of the Aichi-ken Agricultural Research Center, 39, 17-23.
Vatankhah, M., Saberi-Riseh, R., Moradzadeh Eskandari, M., & Afzali, H. (2019). Evaluation of some fungicides for the control of Fusarium dry rot of potato. Journal of Crop Protection, 8(3), 275-285. http://jcp.modares. ac.ir/article-3-23405-en.html
Wegulo, S.N., Baenziger, P.S., Hernandez Nopsa, J., Bockus, W.W., & Hallen-Adams, H. (2015). Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100-107. https://doi.org/10.1016/j.cropro.2015.02.025
White, T.J., Bruns, T.D., Lee, S.B., & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Shinsky, J.J., & White, T.J. (Eds)., PCR Protocols: A Guide to methods and applications (pp 315-322). New York, USA: Academic Press. http://dx.doi.org/10.1016/b978-0-12-372180-8.50042-1
Willyerd, K.T., Li C., Madden, L.V., Bradley, C.A., Bergstrom, G.C.,Sweets, L.E. .... Paul, P.A. (2012). Efficacy and stability of integrating fungicide and cultivar resistance to manage Fusarium head blight and deoxynivalenol in wheat. Plant Disease, 96(7), 957-967. http://dx.doi.org/10.1094/ PDIS-09-11-0763
Wong, F.P., & Midland, S.L. (2007). Sensitivity distributions of California populations of Colletotrichum cereal to the DMI fungicides propiconazole, myclobutanil, tebuconazole, and triadimefon. Plant Disease, 91(12), 1547-1555. https://doi.org/10.1094/ PDIS-91-12-1547
Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicides: modes of action and possible impact on nontarget microorganisms. International Scholarly Research Notices ISRN Ecology, 1-8. https://doi.org/10.5402/2011/130289
Yin, Y., Liu, X., Li, B., & Ma, Z. (2009). Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology, 99(5), 487-497. https://doi.org/10.1094/ PHYTO-99-5-0487
Zhang, H., Van der Lee, T., Waalwijk, C., Chen, W.Q., Xu, J., Xu, J.S. ... Feng, J. (2012). Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One, 7(2), e31722. https://doi.org/10.1371/journal.pone.0031722
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original.
Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Pesticidi i fitomedicina (Pesticides and Phytomedicine) and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.