Natural and semi-synthetic insecticides protect onion from wireworms Agriotes spp. larvae (wireworm) damage
Abstract
Wireworms, the larval stage of click beetles (Elateridae: Agriotes spp.), pose a
significant threat to global agriculture, particularly to root vegetables, such as onion.
Their subterranean lifestyle, as well as the withdrawal of some traditional synthetic
insecticides, make them challenging to control. Therefore, this research aimed to
compare the effects of natural, semi-synthetic and synthetic insecticides in controlling
wireworm damage in an onion field.
A field trial for testing the effects of different insecticidal treatments on plant
density, wireworm damage (%) and total onion yield, was conducted at the Institute
for Vegetable Crops (Smederevska Palanka, Serbia) in 2024. The experiment consisted
of six treatments: an untreated control, three natural insecticides (two formulations
of spinosad a.i. - granular and liquid, and Beauveria bassiana ATCC 74040 2.3×107
conidiospores/ml), a semi-synthetic insecticide (a.i. spinetoram) and a synthetic
insecticide (a.i. tefluthrin). The insecticides were applied during planting, following
their label application rates per hectare. Assessments were conducted 20 and 42 days
after treatment (DAT) to determine plant density. Wireworm damage was specifically
evaluated 42 DAT, and yield was calculated by weighing the harvested onion bulbs. The
results showed that the granular spinosad formulation, applied in furrows at planting,
significantly increased plant density 20 DAT, while its liquid formulation, applied as
a soil treatment during planting, resulted in the lowest density. Spinetoram showed
the highest plant density 42 DAT and the highest percentage of wireworm damage
(15%) of all insecticides tested. The control had the highest percentage of damaged
plants and the lowest yield. Onion yield was at the maximum after treatment with
spinetoram, whereas the lowest yield was achieved after treatment with the granular
spinosad formulation.
Field trials show that natural and semi-synthetic insecticides can effectively
control wireworms, ensuring adequate crop protection and viable yields. This
study supports developing and adopting environmentally conscious soil pest
management.
References
Agrosava d.o.o. Belgrade, Serbia (2025). https://agrosava.com/en/products/saturn-terra-new/ (accessed March, 2025)
Antwi, F.B., Shrestha, G., Reddy, G.V., & Jaronski, S.T. (2018). Entomopathogens in conjunction with imidacloprid could be used to manage wireworms (Coleoptera: Elateridae) on spring wheat. The Canadian Entomologist, 150(1), 124-139.
Arrine, Y., Jacquet, V., & Colas, C. (2017). A new spinosad based product for the control of wireworms on corn and potato crops. In: Ecologie Chimique: nouvelles contributions a la protection des cultures contre les ravageurs et 11e Conference Internationale sur les Ravageurs et Auxiliaires en Agriculture (ref. 4, pp 278-287). Montpellier, France: Association Francaise de Protection des Plantes (AFPP).
Bacci, L., Lupi, D., Savoldelli, S., & Rossaro, B. (2016). A review of Spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. Journal of Entomological and Acarological Research, 48(1), 40-52.
Barsics, F., Haubruge, E., & Verheggen, F.J. (2013). Wireworms’ management: an overview of the existing methods, with particular regards to Agriotes spp. (Coleoptera: Elateridae). Insects, 4(1), 117-152.
Bažok, R., Lemić, D., Čačija, M., & Drmić, Z. (2018). Ekonomski prag štetnosti i prag odluke (kritični broj) na primjeru žičnjaka i lisnih sovica. Glasilo biljne zaštite, 18(5), 500-513.
Bošnjak, D., Gvozdanović-Varga, J., & Vasić, M. (2007). Pedeset godina proizvodnje crnog luka u Vojvodini. Letopis naučnih radova Poljoprivrednog fakulteta, 31(1), 131-139.
Brdar-Jokanović, M., Ugrinović, M., Cvikić, D., Pavlović, N., Zdravković, J., Adžić, S., & Zdravković, M. (2011). Onion yield and yield contributing characters as affected by organic fertilizers. Ratarstvo i povrtarstvo, 48(2), 341-346.
Burgio, G., Ragaglini, G., Petacchi, R., Ferrari, R., Pozzati, M., & Furlan, L. (2012). Optimization of Agriotes sordidus monitoring in northern Italy rural landscape, using a spatial approach. Bulletin of Insectology, 65(1), 123-131.
CBC Group Europe (Challenges Bring Changes) Biogard Division, Italy (2025). https://www.biogard.org/wp-content/uploads/sites/3/2020/03/NATURALIS_INGLESE_2022_bozza_03.pdf (accessed March, 2025)
Chloridis, A., Downard, P., Dripps, J.E., Kaneshi, K., Lee, L.C., Min, Y.K., & Pavan, L.A. (2007). Spinetoram (XDE-175): a new spinosyn. In Proceedings of the XVI International Plant Protection Congress, (pp 68-73, Vol. 1). Glasgow, UK: British Crop Production Council.
Čamprag, D. (Ed.). (1983). Priručnik izveštajne i prognozne službe zaštite poljoprivrednih kultura. Beograd: Savez društava za zaštitu bilja Jugoslavije.
de Oliveira Cantao, F. R., & Mian, G. (2023). Spinosad application prevents damage by Agriotes spp. larvae (wireworms) and protects maize (Zea mays) yield in Northeast Italy. Plant Protection, 7(1), 101-108.
Drobnjaković, T., Prijović, M., Porcu, E., Ricupero, M., Siscaro, G., Zappala, L., & Biondi, A. (2023). Comparative toxicity of spinetoram to Trialeurodes vaporariorum Westwood and its parasitoid Encarsia formosa Gahan. Pesticides and Phytomedicine/Pesticidi i fitomedicina, 38(2), 65-73. https://doi.org/10.2298/PIF2302065D
Drobnjaković, T., Prijović, M., Dervišević, M., Brkić, D., Ricupero, M., & Marčić, D. (2025). Side effects of semi-synthetic insecticide spinetoram on the whitefly parasitoid Encarsia formosa. Pest Management Science, 81(1), 490-497.
Gvozdenac, S., Milovac, Ž., Vidal, S., Lozanov Crvenković, Z., Štajner Papuga, I., Franeta, F., ... Cvejić, S. (2022). Comparison of chemical and biological wireworm control options in Serbian sunflower fields and a proposition for a refined wireworm damage assessment. Agronomy, 12(4), 758.
Gvozdenac, S., Ovuka, J., Miklič, V., Cvejić, S., Tanasković, S., Bursić, V., & Sedlar, A. (2019). The effect of seed treatments on wireworm (Elateridae) performance, damages and yield traits of sunflower (Helianthus annuus L.). Journal of Central European Agriculture, 20(4), 1188-1200.
EPPO (2005). European and Mediterranean Plant Protection Organization standards: Wireworms, PP 1/46 (3). ЕPPO Bulletin, 35, 179-182.
Ericsson, J.D., Todd Kabaluk, J., Goettel, M.S., & Myers, J.H. (2007). Spinosad interacts synergistically with the insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae). Journal of Economic Entomology, 100(1), 31-38.
Ester, A., & Huiting, H. (2007). Controlling wireworms (Agriotes spp.) in a potato crop with biologicals. IOBC WPRS Bulletin, 30(1), 189-196.
European Commission (2009). Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. OJ, L 309, 71-86. https://eur-lex.europa.eu/eli/dir/2009/128/oj/eng
Furlan, L. (2014). IPM thresholds for Agriotes wireworm species in maize in Southern Europe. Journal of Pest Science, 87(4), 609-617.
Furlan, L., Contiero, B., Chiarini, F., Colauzzi, M., Sartori, E., Benvegnu, I., ... Giandon, P. (2017). Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides. Environmental Science and Pollution Research, 24(1), 236-251.
Furlan, L., & Kreutzweiser, D. (2015). Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environmental Science and Pollution Research, 22(1), 135-147.
Hays, J.V. (1933). The seasonal vertical movements of wireworms (Elateridea) in soil near Manhattan, Kansas. (Master Degree). Kansas State Collage of Agriculture and Science.
Kabaluk, J.T., Vernon, R.S., & Goettel, M.S. (2007). Mortality and infection of wireworm, Agriotes obscurus (Coleoptera: Elateridae), with inundative field applications of Metarhizium anisopliae. Phytoprotection, 88(2), 51-56.
Kleespies, R.G., Ritter, C., Zimmermann, G., Burghause, F., Feiertag, S., & Leclerque, A. (2013). A survey of microbial antagonists of Agriotes wireworms from Germany and Italy. Journal of Pest Science, 86, 99-106. Doi: 10.1007/s10340-012-0447-9
Kolliker, U., Biasio, L., & Jossi, W. (2011). Potential control of Swiss wireworms with entomopathogenic fungi. (Proceedings of the IOPC/WPRS Working Group „Insect Pathogens and Entomopathogenic Nematodes”, Innsbruck, Austria, 19-23 June, 2011). IOBC/WPRS Bulletin, 66, 517-520.
Kuhar, T.P., Kamminga, K., Philips, C., Wallingford, A., & Wimer, A. (2013). Chemical control of potato pests (Chpt. 13). In: Insect Pests of Potato: Global Perspectives on Biology and Management (pp 375-397). Waltham, MA: Elsevier.
Ladurner, E., Quentin, U., Franceschini, S., & Benuzzi, M. (2009). Efficacy evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 against wireworms (Agriotes spp.) on potato. IOBC/WPRS Bulletin, 45, 445-448.
Milosavljevic, I. (2015). Ecology, biology, and management of wireworms (Coleoptera: Elateridae) in Pacific Northwest cereal crops. (PhD dissertation). Washington State University.
Nikoukar, A., & Rashed, A. (2022). Integrated pest management of wireworms (Coleoptera: Elateridae) and the rhizosphere in agroecosystems. Insects, 13(9), 769.
Paluch, M. (2022). Biological control of wireworms (Agriotes spp.) in potato cultivation using the entomopathogenic fungus Metarhizium brunneum: Factors that influence the effectiveness of mycoinsecticide formulations. (PhD dissertation). Technische Universitat Darmstadt, Fachbereich Biologie.
Parker, W.E. (1994). Evaluation of the use of food baits for detecting wireworms (Agriotes spp., Coleoptera: Elateridae) in fields intended for arable crop production. Crop Protection, 13(4), 271-276.
Parker, W.E., & Howard, J.J. (2001). The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agricultural and Forest Entomology, 3(2), 85-98.
Plant Protection Directorate (Ministry of Agriculture, Forestry and Water Management, Republic of Serbia) (2025). Lista registrovanih sredstava za zaštitu bilja – Obuhvata rešenja urađena do 31.10.2023. godine. https://uzb.minpolj.gov.rs/wp-content/uploads/2023/12/Lista_registrovanih_sredstava_za_zastitu_bilja_30nov2023.pdf (accessed March, 2025)
Poggi, S., Le Cointe, R., Lehmhus, J., Plantegenest, M., & Furlan, L. (2021). Alternative strategies for controlling wireworms in field crops: a review. Agriculture, 11(5), 436.
Prijović, M., Drobnjaković, T., Marčić, D., Perić, P., Petronijević, S., & Stamenković, S. (2011). Efficacy of insecticides of natural origin in whitefly (Trialeurodes vaporariorum) control in tomato. (V Balkan Symposium on Vegetables and Potatoes). Acta Horticulturae, 960, 359-364.
Racke, K.D. (2006). A reduced risk insecticide for organic agriculture: spinosad case study. In: Crop protection products for organic agriculture (Chapter 7). ACS Symposium Series, 947, 92-108.
Salgado, V.L., Watson, G.B., & Sheets, J.J. (1997). Studies on the mode of action of spinosad, the active ingredient in Tracer insect control. In Proceedings of the Beltwide Cotton Conference (pp 1082-1086). Memphis, TN, USA: National Cotton Council.
Salgado, V.L. (1998). Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology, 60(2), 91-102.
Salgado, V.L., Sparks, T.C., Gilbert, L.I., & Gill, S.S. (2010). The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Insect control: biological and synthetic agents (pp 207-243). London, UK: Academic Press.
Sparks, T.C., Thompson, G.D., Larson, L.L., Kirst, H.A., Jantz, O.K., Worden, T.V., ... Busacca, J.D. (1995). Biological characteristics of the spinosyns: a new naturally derived insect control agents. In: Proceedings Beltwide Cotton Conferences, Volume 2, (pp 903-907, ref. 34). San Antonio, TX, USA: National Cotton Council.
Sparks, T.C., Crouse, G.D., Benko, Z., Demeter, D., Giampietro, N.C., Lambert, W., & Brown, A.V. (2021). The spinosyns, spinosad, spinetoram, and synthetic spinosyn mimics - discovery, exploration, and evolution of a natural product chemistry and the impact of computational tools. Pest Management Science, 77(8), 3637-3649.
Sparks, T.C., Wessels, F.J., Perry, T., Price, M.J., Siebert, M., & Mann, D. (2025). Spinosyn resistance and crossresistance–A 25 year review and analysis. Pesticide Biochemistry and Physiology, 210, 106363.
Staudacher, K., Schallhart, N., Pitterl, P., Wallinger, C., Brunner, N., Landl, M. ... Traugott, M. (2013). Occurrence of Agriotes wireworms in Austrian agricultural land. Journal of Pest Science, 86, 33-39.
Stolpe Nordin, E. (2017). Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective (Bachelor’s thesis). Swedish University of Agricultural Sciences, Uppsala Faculty of Natural Resources and Agricultural Sciences, Department of Ecology.
Sufian, M. (2013). Biology, monitoring and management of economically important wireworm species (Coleoptera: Elateridae) in organic farming (Doctoral dissertation). Universitats- und Landesbibliothek, Bonn.
Štrbac, P. (2005). Opšte metode prognoze štetočina u biljnoj proizvodnji. Novi Sad, Srbija: Poljoprivredni fakultet.
Takač, A., & Vuković, S. (2023). Stemphylium vesicarium (wallr.) EG Simmons: an onion plant pathogen and options for suppression. Pesticides and Phytomedicine / Pesticidi i fitomedicina, 38(2), 43-53.
Toscano, B., Štrbac, P., Popović, Z., Kostić, M., Kostić, I., Konjević, A., & Krnjajić, S. (2017). A faunistic study of the family Elateridae in Bačka, Serbia. Pesticides and Phytomedicine / Pesticidi i fitomedicina, 32(3-4), 181-188.
Traugott, M., Benefer, C.M., Blackshaw, R.P., van Herk, W.G., & Vernon, R.S. (2015). Biology, ecology, and control of elaterid beetles in agricultural land. Annual Review of Entomology, 60(1), 313-334.
Van Herk, W. G., Vernon, R. S., Tolman, J. H., & Ortiz Saavedra, H. (2008). Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. Journal of Economic Entomology, 101(2), 375-383.
Van Herk, W.G., & Vernon, R.S. (2014). Soil bioassay for studying behavioral responses of wireworms (Coleoptera: Elateridae) to insecticide-treated wheat seed. Environmental Entomology, 36(6), 1441-1449.
Van Herk, W.G., Vernon, R.S., Vojtko, B., Snow, S., Fortier, J., & Fortin, C. (2015). Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. Journal of Pest Science, 88(4), 717-739.
Vernon, R.S., Van Herk, W.G., Clodius, M., & Harding, C. (2009). Wireworm management I: stand protection versus wireworm mortality with wheat seed treatments. Journal of Economic Entomology, 102(6), 2126-2136.
Vernon, R.S., Van Herk, W.G., Clodius, M., & Harding, C. (2013). Further studies on wireworm management in Canada: damage protection versus wireworm mortality in potatoes. Journal of Economic Entomology, 106(2), 786-799.
Vernon, B., & Van Herk, W. (2022). Chapter 5: Wireworms as pests of potato. In: Giordanengo P., Vincent C., & Alyokhin A. (Eds), Insect Pests of Potato, Global Perspectives on Biology and Management (pp 103-164). Oxford, UK: Academic Press.
Wilde, G., Roozeboom, K., Ahmad, A., Claassen, M., Gordon, B., Heer, W. ... Witt, M. (2007). Seed treatment effects on early-season pests of corn and on corn growth and yield in the absence of insect pests. Journal of Agricultural and Urban Entomology, 24(4), 177-193.
Wraight, S. P., Lacey, L. A., Kabaluk, J. T., & Goettel, M. S. (2009). Potential for microbial biological control of coleopteran and hemipteran pests of potato. Fruit, Vegetable and Cereal Science and Biotechnology, 3, 25-38.
Yee, W.L. (2018). Spinosad versus spinetoram effects on kill and oviposition of Rhagoletis indifferens (Diptera: Tephritidae) at differing fly ages and temperatures. Journal of Insect Science, 18(4), 15.
Zacharuk, R.Y., & Tinline, R.D. (1968). Pathogenicity of Metarrhizium anisopliae, and other fungi, for five Elaterids (Coleoptera) in Saskatchewan. Journal of Invertebrate Pathology, 12(3), 294-309.
Zhang, K., Li, J., Liu, H., & Wang, H., & Lamusi, A. (2018). Semi-synthesis and insecticidal activity of spinetoram J and its D-forosamine replacement analogues. Beilstein Journal of Organic Chemistry, 14(1), 2321-2330. DOI: 10.3762/bjoc.14.207
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original.
Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Pesticidi i fitomedicina (Pesticides and Phytomedicine) and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
