Efekti fungicida i biofungicida na Rhizoctonia solani patogena paprike

  • Milica Mihajlović Institut za pesticide i zaštitu životne sredine
  • Emil Rekanović Institut za pesticide i zaštitu životne sredine, Banatska 31b, Beograd
  • Jovana Hrustić Institut za pesticide i zaštitu životne sredine, Banatska 31b, Beograd
  • Mila Grahovac Univerzitet u Novom Sadu, Poljoprivredni fakultet, Trg Dositeja Obradovića 8, Novi Sad
  • Marija Stevanović Institut za pesticide i zaštitu životne sredine, Banatska 31b, Beograd
  • Brankica Tanović Institut za pesticide i zaštitu životne sredine, Banatska 31b, Beograd
Ključne reči: Rhizoctonia solani, paprika, fungicidi, biofungicidi, osetljivost, efikasnost

Sažetak


U radu je ispitivana in vitro i in vivo osetljivost Rhizoctonia solani na nekoliko komercijalnih fungicida i biofungicida. Izolat R. solani dobijen je iz obolelih biljaka paprike iz plastenika (Knjaževca, Srbija). U uslovima staklenika, najveća efikasnost utvđena je za iprodion (95,80% u poređenju sa biljkama iz kontrole), iako razlika u efikasnosti između tretmana iprodionom, etarskim uljem čajnog drveta, azoksistrobinom i tiofanat-metilom nije bila statistički značajna. Ispitivani izolat ispoljio je osetljivost na sve ispitivane fungicide i biofungicide in vitro. Dobijene su sledeće EC50 vrednosti: 0,43 mg/l za iprodion, 1,84 mg/l za tiofanat-metil, 13,84 mg/l za prohloraz, 430,37 mg/l za fl uopiram, 596,60 mg/l za azoksistrobin i 496,79 mg/l za ulje čajnog drveta.

 

Reference

Bartlett, D.W., Clough, J.M., Godwin, J.R., Hall, A.A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58(7), 649-662.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.

Carson, C.F., Hammer, K.A., & Riley, T.V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews, 19(1), 50-62.

Coa, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2004). Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Letters in Applied Microbiology, 39(5), 425-430.

Csinos, A.S., & Stephenson, M.G. (1999). Evaluation of fungicides and tobacco cultivar resistance to Rhizoctonia solani incited target spot, damping off and sore shin. Crop Protection, 18(6), 373-377.

D’ercole, N., Nipoti, P., Di Pillo, L., & Gavina, F. (2000). In vitro and in vivo tests of Trichoderma spp. as a biocontrol agent of Verticillium dahliae Kleb. in eggplants. In: E. C. Tjamos, R. C. Rowe, J. B. Heale & D. R. Fravel (eds.), Advances in Verticillium: Research and Disease Management (pp 260-263). St. Paul, MN, USA: APS Press.

Dhingra, O.D., &, Sinclair J.B. (1995). Basic plant pathology methods (2nd ed.). Boca Raton, FL, USA: CRC Press.

EPPO (1997). Guidelines for the efficacy evaluation of plant protection products: Soil fungi attacking ornamental plants – PP 1/40(2). In: EPPO Standards - Guidelines for the efficacy evaluation of plant protection products, 2 (pp 62-66). Paris, France: OEPP/EPPO.

Finney, D.J. (1971). Probit analysis: a statistical treatment of the sigmoid response curve (3rd ed.). Cambridge, UK: Cambridge university press.

Gaskill, J.O. (1968). Breeding for Rhizoctonia resistance in sugarbeet. Journal of the American Society of Sugar Beet Technologists, 15, 107-119.

Gerik, J.S., & Hanson, B.D. (2011). Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds. Pest Management Science, 67(9), 1129-1133.

Isman, M.B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19(8-10), 603-608.

Ivanović, M., & Ivanović, M. (2007). Ima li alternative metil bromidu? (Are there alternatives for methyl bromide?). Biljni lekar, 35(6), 609-615.

Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10(10), 813-829.

Leroux, P., & Gredt, M. (1972). Etude de l’action in–vitro des fongicides, methode de l’incorporation ou milieu. Laboratorie de Phytopharmacie–INRA, Versailles, 1-10.

Löcher, F.J., & Lorenz, G. (1991). 4. Methods for monitoring the sensitivity of Botrytis cinerea to dicarboximide fungicides. EPPO Bulletin, 21(2), 341-354.

Markham, J.L. (1999). Biological activity of tea tree oil (pp 169-190). In: I. Southwell & R. Lowe, Tea tree, the genus Melaleuca. Amsterdam, Netherlands: Harwood Academic Publishers.

Mijatović, M., Obradović, A., & Ivanović M. (2007). Zaštita povrća od bolesti, štetočina i korova. Smederevska Palanka, Serbia: AgroMivas.

Narayanasamy, P. (2001). Plant pathogen detection and disease diagnosis (2nd ed.). Boca Raton, FL, USA: CRC Press.

Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25, 125-143.

Pandey, A., & Palni, L.M.S. (1997). Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. Microbiological Research, 152(4), 359-365.

Pritchard, S.G. (2011). Soil organisms and global climate change. Plant Pathology, 60(1), 82-99.

Rini, C.R., & Sulochana, K.K. (2006). Management of seedling rot of chilli (Capsicum annuum L.) using Trichoderma spp. and fl uorescent pseudomonads (Pseudomonas fl uorescens). Journal of Tropical Agriculture, 44(1-2), 79-82.

Ryder, M.H., Yan, Z., Terrace, T.E., Rovira, A.D., Tang, W., & Correll, R.L. (1998). Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biology and Biochemistry, 31(1), 19-29.

Sharma, M., Gupta, S.K., & Sharma, T.R. (2005). Characterization of variability in Rhizoctonia solani by using morphological and molecular markers. Journal of Phytopathology, 153(7-8), 449-456.

Swiader, M., Pronczuk, M., & Niemirowicz-Szczyt, K. (2002): Resistance of Polish lines and hybrids of watermelon [Citrullus lanatus (Th unb.) Matsum et Nakai] to Fusarium oxysporum at the seedling stage. Journal of Applied Genetics, 43, 161-170.

UNEP (1994). 1994 Report of the Methyl Bromide Technical Options Committee for the 1995, Assessment of the UNEP Montreal protocol on substances that deplete the ozone layer. Nairobi, Kenya: United Nations Environment Programme, Methyl Bromide Technical Options Committee.

Whipps, J. M., & Lumsden, R. D. (2001). Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt, T.M., Jackson, C., & Magan, N. (eds.), Fungal biocontrol agents: progress, problems and potential, 9-22.

White, T.J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplifi cation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.

Wood, P.M., & Hollomon, D.W. (2003). A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. Pest Management Science, 59(5), 499-511.

Ziogas, B.N., Baldwin, B.C., & Young, J.E. (1997). Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. Pesticide Science, 50(1), 28-34.

Objavljeno
2020/12/17
Kako citirati
Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., Stevanović, M., & Tanović, B. (2020). Efekti fungicida i biofungicida na Rhizoctonia solani patogena paprike. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 35(2), 97-104. https://doi.org/10.2298/PIF2002097M
Rubrika
Originalni naučni članak