Proučavanje otpornosti različitih sorti graška na alelopatsko delovanje ekstrakta Sorghum halepense (L.) Pers.

  • Natalia Georgieva Institute of Forage Crops
  • Валентин Косев Институт за крмно биље
  • Славка Славка Калапчиева Maritsa Vegetable Crops Research Institute
Ključne reči: alelopatija, korovi, Pisum sativum, Sorghum halepense

Sažetak


U istraživanju su identifikovane sorte graška sa izraženom otpornošću na alelopatsko delovanje Sorghum halepense. Odabrano je devet sorti kako bi se ispitao uticaj ekstrakta biomase izdanka i korena, primenjenih u tri koncentracije (1, 5 and 10%), na klijanje semena i inicijalni rast klijanaca. Analiza varijanse je pokazala značajan uticaj (p <0.05) tri ispitivana faktora (sorta, vrsta i koncentracija ekstrakta) na proučavane parametre. Kao statistički značajan pokazao se samo uticaj vrste ekstrakta (koren/nadzemna biomasa) na klijanje semena. Na osnovu apsolutnih vrednosti alelopatskog indikatora RI, kojim se određuje alelopatska inhibicija klijanja, kao i dužine i težine klijanaca kod različitih varijeteta, utvrđene su sledeće respektivne varijacije: od -0.30 do -0.04, od -1.31 do -2.96 i od -0.47 do 0.02. U okviru ukupnog alelopatski uticaja S. halepense na proučavane parametre, pokazanog GGE-biplot analizom, pokazalo se da sorte Pulpudeva i Puldin poseduju veću tolerantnost u odnosu na sorte Denitsa i Vyatovo, koje su osetljive. Ran I, Mira, Musala i Vechernitsa imale su srednje vrednosti. Gajenje alelopatski tolerantnih sorti predstavlja perspektivan doprinos postojećoj strategiji za suzbijanje korova, naročito u uslovima organske proizvodnje.

Biografija autora

Natalia Georgieva, Institute of Forage Crops
Institute of Forage Crops, professor

Reference

An, M., Liu, D.L., Wu, H.W., & Liu,Y.H. (2008). Allelopathy from a mathematical modeling perspective. In R.S. Zeng, A.U. Mallik & S.M. Luo (Eds.), Allelopathy in sustainable agriculture and forestry (pp 169-188). New York, USA: Springer-Verlag.

Bakhshayeshan-Agdam, H., & Salehi-Lisar S.Y. (2020) Agronomic crops response and tolerance to allelopathic stress. In: M. Hasanuzzaman (Ed.), Agronomic Crops, 3, 313-348. Singapore: Springer. doi.org/10.1007/978-981-15-0025-1_17

Bakhshayeshan-Agdam, H., Salehi-Lisar, S.Y., Motafakkerazad, R., Talebpour, A., & Farsad, N. (2015). Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) on germination and growth of cucumber, alfalfa, common bean and bread wheat. Acta Agriculturae Slovenica, 105(2), 193-202.

Baličević, R., Ravlić, M., Knežević, M., & Serezlija, I. (2014). Allelopathic effect of field bindweed (Convolvulus arvensis L.) water extracts on germination and initial growth of maize. Journal of Animal and Plant Sciences, 24(6), 1844-1848.

Butnariu, M. (2012). An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chemistry Central Journal, 6, 75.

Cheema, Z.A., & Ahmad, S. (1992). Allelopathy: a potential tool for weed management. In Proceedings of the National Seminar on the Role of Plant Health and Care in Agriculture (pp 151-156). Faisalabad, Pakistan: University of Agriculture Press.

Cheema, Z.A., Iqbal, M., & Ahmad, R. (2002). Response of wheat varieties and some rabbi weeds to allelopathic effects of sorghum water extract. International Journal of Agriculture and Biology, 4, 52-55.

Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020.

Chon, S.U., & Nelson C.J. (2001). Effects of experimental procedures and conditions on bioassay sensitivity of lucerne autotoxicity. Communications in Soil Science and Plant Analysis, 32(9-10), 1607-1619.

Chung, I.M., Kim, K.H., Ahn, J.K., Lee, S.B., Kim, S.H., & Hahn, S.J. (2003). Comparison of allelopathic potencial of rice leaves, straw and hull extracts on barnyardgrass. Agronomy Journal, 95(4), 1063-1070.

Einhellig,F.A. (1995). Allelopathy – current status and future goals. In A. Inderjit, K.M.M. Dakshini & F.A. Einhellig (Eds.), Allelopathy: Organisms, processes, and applications (pp 1-24). Washington, USA: American Chemical Society Press.

Georgieva, N. (2019). Allelopathic tolerance in white lupine (Lupinus albus L.) accessions to Sorghum halepense extracts. Journal of BioScience and Biotechnology, 8(1), 51-58.

Georgieva, N., Nikolova, I., & Kosev, V. (2018). Variation in allelopathic tolerance of vetch cultivars to Sorghum halepense L. (Pers.) extracts. Pesticides and Phytomedicine, 33(1), 65-74.

Georgieva, N., Nikolova, I., & Marinov-Serafimov, P. (2015). Comparative characteristics of Lupinus albus L. and Lupinus luteus L. under allelopathic effect of Sorghum halepense Pers. Pesticides and Phytomedicine, 30(1), 41-50.

Hadacek, F., Bachmann, G., Engelmeier, D., & Chobot, V. (2010). Hormesis and a chemical raison d’etre for secondary plant metabolites. Dose-Response, 9(1), 79-116.

Hallak, A.M.G., Davide, L.C., & Souza, I.F. (1999). Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genetics and Molecular Biology, 22(1), 95-99. doi:10.1590/S1415-47571999000100018

Hejl, A.M., & Koster, K.L. (2004). The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. Journal of Chemical Ecology, 30(11), 2181-2191. doi: 10.1023/B:JOEC.0000048782.87862.7f

Hristoskov, A. (2013). Spread, damage and possibilities for control of Sorghum halepense L. Pers in medium early and late potatoes (PhD dissertation). Agricultural University, Plovdiv, Bulgaria. (in Bulgarian)

Jabran, K. (2017). Manipulation of allelopathic crops for weed control. Turkey: Springer International Publishing.

Khan, R., Rasheed, S.M., Rehman, F., Shah, S.S., & Khan, M.S. (2019). Tolerance of chickpea varieties against allelopathic potential of two invasive weeds collected from three locations of Khyber Pakhtunkhwa. Pakistan Journal of Weed Science Research, 25(4), 259-267.

Khatri, K., Bargali, K., Negi, B., & Bargali, S.S. (2020). Germination and early seedling growth of two rice varieties as affected by invasive Ageratina adenophora. Current Agriculture Research Journal, 8(2), 108-117.

Li, Z.H., Wang, Q., Ruan, X., Pan, C.D., & Jiang, D.A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952. doi:10.3390/molecules15128933

Macias, F.A., Mejias, F.J.R. & Molinillo, J.M.G. (2019). Recent advances in allelopathy for weed control: from knowledge to applications. Pest Management Science, 75(9), 2413-2436.

Movahedpour, F., Nassab, A.M., Shakiba, M.R. & Saied, A. (2010). Sorghum halepense (Johnsongrass) water extract effects as alone and integrated with current methods on weed control in soybean. Journal of Food Agriculture and Environment, 88(3), 908-913.

Scavo, A., Restuccia, A., & Mauromicale G. (2018). Allelopathy: principles and basic aspects for agroecosystem control. Sustainable Agriculture Reviews, 28, 47-101.

Shahrokhi, S., Hejazi, S.N., Khodabandeh, H., Farboodi, M., & Faramarzi, A. (2011). Allelopathic effect of aqueous extracts of pigweed, Amaranthus retroflexus L. organs on germination and growth of five barley cultivars. In 3rd International Conference on Chemical, Biological and Environmental Engineering IPCBEE (pp 80-84). Singapore: IACSIT Press.

Shao, Q., Li, W., Yan, S., Zhang, C., Huang, S., & Ren, L. (2019). Allelopathic effects of different weed extracts on seed germination and seedling growth of wheat. Pakistan Journal of Botany, 51(6), 2159-2167.

Tahseen, N.K. & Jagannath, S. (2015). Assessment of allelopathic efficacy of Parthenium hysterophorus L. plant parts on seed germination and seedling growth of Phaseolus vulgaris L. Brazilian Journal of Biological Sciences, 2(3), 85-90.

Trezzi, M.M., Vidal, R.A., Balbinot Junior A. A., Bittencourt H.H., & Filho, A.P.S.S. (2016) Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1), 53-60.

Valcheva, E., Popov, V., Zorovski, P., Golubinova, I., Marinov-Serafimov, P., Velcheva, I., & Ptrova, S. (2018). Allelopathic effect of dodder on different varieties of lucerne and bird’s foot trefoil. Contemporary Agriculture, 67, 1, 27-33.

Vasilakoglou, I., Dhima, K., & Eleftherohorinos, I. (2005). Allelopathic potential of Bermuda grass and Johnson grass and their interference with cotton and corn. Agronomy Journal, 97(1), 303-313.

Zhang, G., Liu, R., Yang, C., & Yang, F. (2015). Allelopathic effects of cotton straw extract on seed germination and seedling growth of wheat. Journal of Triticeae Crops, 35(4), 555-562.

Zohaib, A., Abbas, T., & Tabassum, T. (2016). Weeds cause losses in field crops through allelopathy. Notulae Scientia Biologicae, 8(1), 47-56.

Objavljeno
2021/10/07
Kako citirati
Georgieva, N., Косев, В., & Славка Калапчиева, С. (2021). Proučavanje otpornosti različitih sorti graška na alelopatsko delovanje ekstrakta Sorghum halepense (L.) Pers. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 36(2), 91-99. https://doi.org/10.2298/PIF2102091G
Rubrika
Originalni naučni članak