Ispitivanje primene biofugicida na bazi Bacillus subtilis Ch-13 u suzbijanju prouzrokovača zelene plesni i pospešivanju prinosa šampinjona u industrijskim razmerama

  • Ivana S Potočnik Institut za pesticide i zaštitu životne sredine
  • Biljana Todorović Institute of Pesticidies and Environmental Protection, Belgrade-Zemun, Serbia
  • Svetlana Milijašević-Marčić Institute of Pesticidies and Environmental Protection, Belgrade-Zemun, Serbia
  • Jelena Luković Institute of Pesticidies and Environmental Protection, Belgrade-Zemun, Serbia
  • Gabriella Kanižai Šarić Faculty of Agrobiotechnical Sciences Osijek, Croatia
  • Ivana Majić Faculty of Agrobiotechnical Sciences Osijek, Croatia
  • Emil Rekanović Institute of Pesticidies and Environmental Protection, Belgrade-Zemun, Serbia
Ključne reči: Bacillus subtilis, biofungicidi, šampinjon, Trichoderma aggressivum, suzbijanje bolesti pečuraka

Sažetak


Cilj rada je ispitivanje mogućnosti primene biofungicida na bazi Bacillus subtilis Ch-13 u suzbijanju prouzrokovača zelene plesni i povećanju prinosa šampinjona. Biofungicid je testiran nakon prirodne zaraze Trichoderma aggressivum u komercijalnom gajilištu šampinjona i poređenjem sa fungicidom prohlorazom. Testirana je efikasnost mikrobiološkog biofungicida kroz dva postupka višestruke primene, u tri i u dve ponovljene doze. Najveću statistički značajnu efikasnost u suzbijanju prouzrokovača zelene plesni je ispoljio fungicid prohloraz 71,43%, zatim biofungicid primenjen u tri doze 53,57% i najmanju primenjen u dve doze
46,45%. Efikasnost B. subtilis Ch-13 u suzbijanju prouzrokovača zelene plesni je bila veća od 50% kada je primenjen u tri doze, za razliku od niže efikasnosti u dvokratnoj primeni. Testirani B. subtilis Ch-13 je značajnije povećao prinos šampinjona primenjen u tri podeljene doze nego u dve, iako sa istom ukupnom primenjenom količinom preparata. Biofungicid je znatno poboljšao prinos u poređenju sa netretiranom kontrolom i fungicidom prohlorazom. Soj B. subtilis Ch-13 je pokazao izuzetno pozitivan uticaj na prinos šampinjona primenjen u tri doze, sa povećanjem ukupne količine ubranih šampinjona 8,41% u odnosu na netretiranu kontrolu i 10,53% u odnosu na fungicid prohloraz. Ovi rezultati pokazuju da bi biofungicid na bazi B. subtilis Ch-13 trebalo primeniti u tri podeljene doze: 30 ml (drugi dan nakon stavljanja pokrivke) + 15 ml (dve nedelje nakon stavljanja pokrivke) + 15 ml (nakon prvog talasa plodonošenja, 20-25 dana nakon pokrivanja). Biofungicid B. subtilis Ch-13, neškodljiv za životnu sredinu i neciljne organizme, bi trebalo dalje ispitati u zajedničkoj primeni sa hemijskim fungicidima u različitim načinima primene da bi se obezbedila bolja efikasnost u suzbijanju prouzrokovača bolesti, jer je pokazao zadovoljavajuće osobine i u sprečavanju
širenja mikopatogena T. aggressivum i povećanju prinosa.

Reference

Abbott W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-268. Doi : https://doi.org/10.1093/jee/18.2.265a

Carrasco, J., Navarro, M.J., Santos, M., & Gea, F.J. (2017). Effect of five fungicides with different modes of action on mushroom cobweb disease (Cladobotryum mycophilum) and mushroom yield. Annals of Applied Biology, 171(1), 62-69.

Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. Chapter 13. In: Dr Margarita Stoytcheva (Ed.), Pesticides in the modern world - Pesticides use and management (pp 273-302). Rijeka, Croatia: In Tech Europe. Doi: 10.5772/17184

Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations. Prikladnaya Biokhimya i Mikrobiologiya, 45(4), 465-469.

Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3), 848-864. Doi: 10.1111/j.1462-2920.2012.02860.x

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famaxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26, 469-475. Doi: 10.1016/j.cropro.2006.02.016

EPPO (2010). Efficacy evaluation of fungicides: Fungal diseases on cultivated mushrooms of Agaricus spp. - PP 1/270 (1) in EPPO Standards. OEPP/EPPO Bulletin, 40, 270-273.

Food and Drug Administration (FDA) (2020). Code of federal regulations, Title 21: Food and drugs, Chapter 1: Food and Drug Administration Department of Health and Human Services, Part 184: Direct food substances affirmed as generally recognized as safe (pp 892-896). Washington, DC: US Government Printing Office.

Grogan, H.M., Keeling, C., & Jukes, A.A. (2000). In vivo response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In Proceedings of Brighton Crop Protection Conference: Pests & Diseases (1, pp 273-278). Farnham, UK: BCPC.

Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Journal of Agricultural Faculty of Uludag University, 29(1), 19-28. Doi: https://dergipark.org.tr/tr/download/article-file/154225

Kosanović, D., Grogan, H., & Kavanagh, K. (2020). Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biology, 124(9), 814-820. Doi: 10.1016/jfunbio.2020.07.003

Manjula, K., & Podile, A. R. (2005). Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian Journal of Experimental Biology, 43, 892-896.

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. Doi: 10.1007/s10658-016-1107-3

O’Brien, M., Kavanagh, K., & Grogan, H. (2017). Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate mixing on Agaricus bisporus yield. European Journal of Plant Pathology, 147(1), 199-209. Doi: https://doi.org./10.1007/s10658-016-0992-9

Pandin, C., Védie, R., Rousseau, T., Le Coq, D., Aymerich, S., Briandet, R. (2018). Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biological Control, 127, 39-54. Doi: https://doi.org./10.1016/j.biocontrol.2018.08.022

Potočnik, I., Rekanović, E., Todorović, B., Luković, J., Paunović, D., Stanojević, O. & Milijašević-Marčić, S. (2019). The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pesticides and Phytomedicine, 34(1), 53-60. Doi: https://doi.org/10.2298/PIF1901053P

Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of Bacillus subtilis QST713 mushroom grain spawn treatment on yield and green mould control. Pesticides and Phytomedicine, 33(3-4), 205-212. Doi: https.//doi.org./10.2298/PIF1804205P

Regnier, T., & Combrinck, S. (2010). In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. South African Journal of Botany, 76, 681-685. Doi: https://doi.org/10.1016/j.sajb.2010.07.018

Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, & L.A., Petrini, O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170. Doi: 10.2307/3761854

Savoie, J.-M., Iapicco, R., & Largeteau-Mamoun, M. (2001). Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycological Research, 105(11), 1348-1356. Doi: 10.1017/S0953756201004993

Sokal, R.R., & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, USA: W.H. Freeman and Company.

Team of editors (2020). Pesticidi u poljoprivredi i šumarstvu u Srbiji (Pesticides in agriculture and forestry in Serbia) (20th edit.). Belgrade, Serbia: Serbian Plant Protection Society.

Védie, R., & Rousseau, T. (2008). Serenade biofungicide: une innovation mjeure dans les champignonnieres françaises pour lutter contre Trichoderma aggressivum, agent de la moisissure verte du compost. La Lettre du CTC, 21, 1-2.

Objavljeno
2021/10/07
Kako citirati
Potočnik, I. S., Todorović, B., Milijašević-Marčić, S., Luković, J., Kanižai Šarić, G., Majić, I., & Rekanović, E. (2021). Ispitivanje primene biofugicida na bazi Bacillus subtilis Ch-13 u suzbijanju prouzrokovača zelene plesni i pospešivanju prinosa šampinjona u industrijskim razmerama. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 36(2), 83-90. https://doi.org/10.2298/PIF2102083P
Rubrika
Originalni naučni članak