IIspitivanje spermotoksičnog, embriotoksičnog i citotoksičnog delovanja bakar piritiona na Paracentrotus lividus (Lamarck, 1816)
Sažetak
Ispitivano je spermotoksično, embriotoksično i citotoksično delovanje biocida bakar piritiona (CuPt), koji se koristi protiv biotaloženja, kako bi se u biotestu procenila inhibicija oplodnje, kvalitet potomstva i delovanje na rani razvoj morskog ježa Paracentrotus lividus. U pogledu nivoa oplodnje, CuPt je pokazao odsustvo spermotoksičnosti, ali se učestalost deformacija embriona povećala kada su jaja oplođena spermom izloženom delovanju CuPt, i to u zavisnosti od koncentracije. Dobijena je CuPt EC50 od 13.58 μg/l za embriotoksičnost. Dok je učestalost normalno razvijenih pluteusa opadala, broj larvi sa skeletnim deformacijama se povećavao. Odgovarajuće vrednosti IC25 i IC50 u biotestovima citotoksičnosti su bile 12.79
i 47.85 μg/l. Istraživanje je otkrilo statistički značajno smanjenje učestalosti deobe ćelija mitozom, povećanje procenta interfaznih ćelija i povećanje hromozomskih abnormalnosti kod izloženih ćelija. Prema ovim rezultatima, može se reći da primenjene koncentracije CuPt imaju visoko toksično delovanje na embrione morskog ježa. Ovakva situacija ukazuje na mogući rizik od kontaminacije ove vrste bakar piritionom.
Reference
Bao, V.W.W., Leung, K.M.Y., Qiu, J.W., & Lam, M.H.W. (2011). Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Marine Pollution Bulletin 62, 1147-1151. doi:10.1016/j.marpolbul.2011.02.041
Basallote, M.D., Rodriguez-Romero, A., De Orte, M.R., DelValls, T.A., & Riba, I. (2018). CO2 leakage simulation: effects of the pH decrease on fertilization and larval development of Paracentrotus lividus and sediment metals toxicity. Chemistry and Ecology, 34, 1-21.
Bellas, J., R. Beiras, J.C. Marino-Balsa, N. Fernandez. (2005). Toxicity of organic compounds to marine invertebrate embryos and larvae: A comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology, 14, 337-353.
Cairns, J. (1986). Community toxicity testing: ASTM STP 920. West Conshohocken, PA: American Society for Testing and Materials.
Calabrese, E.J. (2008). Hormesis: Why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry, 27(7), 1451-1474.
Carballeira, C., Ramos-Gomez, J., Martin-Diaz, L., & DelValls, T.A. (2012). Identification of specific malformations of sea urchin larvae for toxicity assessment: Application to marine pisciculture effluents. Marine Environmental Research, 77, 12-22.
Chapman, G.A., Denton, D.L., & Lazorchak, J.M. (eds.) (1995). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA-600-R95-136.Cincinnati, OH: U.S. Environmental Protection Agency.
Egardt, J., Nilsson, P., & Dahllof, I. (2017). Sediments indicate the continued use of banned antifouling compounds. Marine Pollution Bulletin, 125, 282-288.
Ermolayeva, E., & Sanders, D. (1995). Mechanism of pyrithione induced membrane depolarization in Neurospora crassa. Applied and Environmental Microbiology, 61, 3385-3390.
EU Commission (2015). Commission implementing regulation (EU) 2015/984 of 24 June 2015 approving copper pyrithione as an existing active substance for use in biocidal products for product-type 21. Official Journal of the European Union, L159, 43-45.
Fernández-Alba, A.R., Hernando, M.D., Piedra, L., & Chisti, Y. (2002). Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta, 456, 303-312. doi:10.1016/S0003-2670(02)00037-5
Fernandez N., & Beiras, R. (2001). Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology, 10, 263-271.
Ferreira, K., Torres, G.A., Carvalho, I.V., & Davide, L.C. (2009). Abnormal meiotic behavior in three species of Crotalaria. Pesquisa Agropecuaria Brasileira, 44(12). doi: 10.1590/S0100-204X2009001200012
Gallo, A., Manfra, L., Boni, R., Rotini, A., Migliore, L., & Tosti, E. (2018). Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Environment International, 118, 325-333.
Gravina, M., Pagano, G., Oral, R., Guida, M., Toscanesi, M., Siciliano, A. …Trifuoggi, M. (2018). Heavy rare earth elements affect Sphaerechinus granularis sea urchin early life stages by multiple toxicity endpoints. Bulletin of Environmental Contamination and Toxicology, 100, 641-646.
Grigoryan, K.R., & Shiladzhyan, A.A. (2009). The effect of solvated ions on the termal denaturation of human serum albumin in water-dimethylsulfoxide solutions. Russian Journal of Bioorganic Chemistry, 35(5), 581-584. doi: 10.1134/S1068162009050070
Harino, H., Yamamoto, Y., Eguchi, S., Kawai, S., Kurokawa, Y., Arai, T. … Miyazaki, N. (2007). Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi bay, Japan. Archives of Environmental Contamination and Toxicology, 52, 179-188. doi: 10.1007/s00244-006-0087-2
Kobayashi, N., & Okamura, H. (2002). Effects of new antifouling compounds on the development of sea urchin. Marine Pollution Bulletin, 44, 748-751. doi: 10.1016/S0025-326X (02)00052-8
Koutsaftis, A, & Aoyama, I. (2007). Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Science of the Total Environment, 387, 166-174. doi: 10.1016/j.scitotenv.2007.07.023
Lavtizar, V., Kimura, D., Asaoka, S., & Okamura, H. (2018). The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Ecotoxicology and Environmental Safety, 147, 132-138.
Maraldo, K., & Dahllof, I. (2004). Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. Marine Pollution Bulletin, 48, 894-901.
Martins, S.E., Fillmann, G., Lillicrap, A., & Thomas, K.V. (2018). Review: ecotoxicity of organic and organometallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling, 34, 34-52.
Mochida, K., Amano, H., Onduka, T., Kakuno, A.,& Fujii, K. (2011). Toxicity and metabolism of copper pyrithione and its degradation product, 2,20-dipyridyl disulfide in a marine polychaete. Chemosphere, 82, 390-397. doi: 10.1016/j.chemosphere.2010.09.074
Mochida, K., Ito, K., Harino, H., Tanaka, H., Onduka, T., Kakuno, A., & Fujii, K. (2009). Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuP) and its possible involvement in vertebral deformity of a CuP-exposed marine teleostean fish. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmagology, 149, 624–630. doi: 10.1016/j.cbpc.2009.01.003
Morroni, L., Pinsino, A., Pellegrini, D., & Regoli, F. (2018). Reversibility of trace metals effects on sea urchin embryonic development. Ecotoxicology and Environmental Safety, 148, 923-929.
Morroni, L., Pinsino, A., Pellegrini, D., Regoli, F., & Matranga, V. (2016). Development of a new integrative toxicity index based on an improvement of the sea urchin embryotoxicity test. Ecotoxicology and Environmental Safety, 123, 2-7.
Novelli, A.A., Losso, C., Ghetti, F.P., & Ghirardini, V.A. (2003). Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus (Echinodermata: Echinoidea): Comparisons with exposure concentrations in the Lagoon of Venice, Italy. Environmental Toxicology and Chemistry, 22(6), 1295-1301. doi: 10.1002/etc.5620220616
Okamura, H., Watanabe, T., Aoyama, I., & Hasobe, M. (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 46, 945-951. doi: 10.1016/S0045-6535(01)00204-1
Onduka, T., Mochida, K., Harino, H., Ito, K., Kakuno, A., & Fujii, K. (2010). Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Archives of Environmental Contamination and Toxicology, 58, 991-997.
Oral, R. (1997). Selenat, Selenit ve Seleno-Dl- Metionin’in Paracentrotus lividus (Lamarck, 1816) üzerine embriyotoksik ve genotoksik etkilerinin araştırılması. Doctoral Dissertation. Ege University, Graduate School of Natural and Applied Science, Izmir, Turkey.
Oral, R., Pagano, G., Siciliano, A., Gravina, M., Palumbo, A., Castellano, I. … Trifuoggi, M. (2017). Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins. Environmental Research, 154, 240-246.
Pagano, G., Cipollaro, M., Corsale, G., Esposito, A., Ragucci, E., Giordano, G.G., & Trieff, N.M. (1986). The sea urchin: Bioassay for the assessment of damage from environmental contaminants (pp 67-92). In: Cairns, J., Jr., (ed.), Community toxicity testing. Philadelphia, PA: American Society for Testing and Materials. doi: 10.1520/STP23050S.
Pagano, G., Guida, M., Trifuoggi, M., Thomas, P. Palumbo, A., Romano, G., & Oral. R. (2017). Sea urchin bioassays in toxicity testing: I. Inorganics, organics, complex mixtures and natural products. Expert Opinion on Experimental Biology, 6, 1-10. doi: 10.4172/2325-9655.1000142
Pagano, G., Laccarino, M., De Biase, A., Meriç, S., Warnau, M., Oral, R., & Trieff, N.M. (2001). Factors affecting R6 fungicide toxicity on sea urchin fertilization and early development: roles of exposure routes and mixture components. Human and Experimental Toxicology, 20, 404-411. doi: 10.1191/096032701682692982
Perez, S., Fernandez, N., & Ribeiro, P.A. (2016). Standardization of a Patella spp. (Mollusca, Gastropoda) embryo-larval bioassay and advantages of its use in marine ecotoxicology. Ecotoxicology and Environmental Safety, 127, 175-186.
Phillips, N.E., & Rouchon, A.M. (2018). A dose-dependent relationship between copper burden in female urchin gonads and developmental impairment of their offspring. Marine Environmental Research, 136, 120-125.
Rial, D., Leon, V.M., & Bellas, J. (2017). Integrative assessment of coastal marine pollution in the Bay of Santander and the Upper Galician Rias. Journal of Sea Research, 130, 239-247.
Soares, J.B., & Junior, C.R. (2016). Echinodermata in ecotoxicological tests: maintenance and sensitivity. Brazilian Journal of Oceanography, 64, 29-36.
Tang S., Liang, J., Xiang, C., Xiao, Y., Wang, X., Wu, J. … Cheke, R.A. (2019). A general model of hormesis in biological systems and its application to pest management. Journal of Royal Society Interface, 16(157), 20190468.
Thomas, K.V., Blake, S.J., & Waldock, M.J. (2000). Antifouling paint booster biocide contamination in UK marine sediments. Marine Pollution Bulletin, 40(9),739-745.
Wang, H., Li, Y., Huang, H., Xu, X., & Wang, Y. (2011). Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test. Environmental Toxicology and Chemistry, 30, 692-703. https://doi.org/10.1002/etc.440
Xu, X., Li, Y., Wang, Y., & Wang, Y. (2011). Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicology in Vitro, 25, 294-300. doi.org/10.1016/j.tiv.2010.09.007
Xue, X., Fu, J., Wang, H., Zhang, B., Wang, X., & Wang, Y.. (2011). Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius). Ecotoxicology, 20(2), 419-428. doi: 10.1007/s10646-011-0593-5.
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).
