Penicillium expansum, P. crustosum i P. paneum prouzrokovači plave truleži šećerne repe u Srbiji
Sažetak
U ovom istraživanju kao prouzrokovači plave truleži korena šećerne repe identifikovane su tri vrste iz roda Penicillium, P. expansum, P. crustosum i P. paneum, što predstavlja novi nalaz za Srbiju. Osim toga, naročito je značajno da je P. crustosum prvi put opisan kao prouzrokovač plave truleži korena šećerne repe u svetu. Izolati Penicillium spp. iz korenova šećerne repe prikupljenih u toku vađenja i iz prezimelih korenova molekularno i morfološki su okarakterisani i procenjen je njihov potencijal kao postžetvenih patogena. Test patogenosti na veštački inokulisanim korenovima potvrdili su da sve izolovane Penicillium spp. mogu izazvati trulež korena šećerne repe, pri čemu je najvirulentnija vrsta bila P. expansum, a zatim P. crustosum i P. paneum. Pošto su vrste roda Penicillium značajni postžetveni patogeni koji mogu dovesti do ekonomskih gubitaka i kontaminacije mikotoksinima, dalja istraživanja njihovog prisustva i uticaja nakon vađenja repe, u toku čuvanja, su od suštinskog značaja. Dobijeni rezultati doprinose znanju o vrstama roda Penicillium koje mogu kolonizovati koren šećerne repe i proširuju naše razumevanje raznovrsnosti vrsta ovog roda u Srbiji.
Reference
An, K.D., Kiyuna, T., Kigawa, R., Sano, C., Miura, S., & Sugiyama, J. (2009). The identity of Penicillium sp. 1, a major contaminant of the stone chambers in the Takamatsuzuka and Kitora Tumuli in Japan, is Penicillium paneum. Antonie Van Leeuwenhoek, 96, 579-592. https://doi.org/10.1007/s10482-009-9373-0
Andersen, B., Thrane, U. (2006). Food-borne fungi in fruit and cereals and their production of mycotoxins. Advances in Food Mycology, 571, 137-152. https://doi.org/10.1007/0-387-28391-9_8
Boudra, H., Rouillé, B., Lyan, B., Morgavi, D.P. (2015). Presence of mycotoxins in sugar beet pulp silage collected in France. Animal Feed Science and Technology, 205, 131-135.
Boysen, M.E., Jacobsson, K.G., & Schnürer, J. (2000). Molecular identification of species from the Penicillium roqueforti group associated with spoiled animal feed. Applied and Environmental Microbiology, 66, 1523-1526.
Bugbee, W.M. (1975). Penicillium claviforme and Penicillium variabile: Pathogens of stored sugar beets. Phytopathology 65, 926-927. https://doi.org/10.1094/Phyto-65-926
Bugbee, W.M., & Nielsen, G.E. (1978). Penicillium cyclopium and Penicillium funiculosum as sugarbeet storage rot pathogens. Plant Disease Reporter, 62, 953.
Day, J.P., & Shattock, R.C. (1997). Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. European Journal of Plant Pathology, 103, 379-391.
Duduk, N., Bekčić, F., Žebeljan, A., Vučković, N., & Vico, I. (2021) First report of blue mold caused by Penicillium crustosum on nectarine fruit in Serbia. Plant Disease, 105(2), 489. https://doi.org/10.1094/PDIS-07-20-1632-PDN
Duduk, N., Lazarević, M., Žebeljan, A., Vasić, M., & Vico, I. (2017). Blue mould decay of stored onion bulbs caused by Penicillium polonicum, P. glabrum and P. expansum. Journal of Phytopathology, 165(10), 662-669. https://doi.org/10.1111/jph.12605
Dugan, F.M., & Strausbaugh, C.A. (2019). Catalog of Penicillium spp. causing blue mold of bulbs, roots, and tubers. Mycotaxon 134, 197-213.
Frisvad, J.C., & Samson, R.A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 49, 1-174.
Fugate, K., & Campbell, L. (2009). Postharvest deterioration of sugar beet. R. M. In: Harveson, R.M., Hanson, L.E., & Hein, G.L. (eds), Compendium of Beet Diseases and Pests, 2nd edn. (pp 92-94). St. Paul: APS Press.
Glass, N.L., & Donaldson, G.C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
Hong, S.B., Cho, H.S., Shin, H.D., Frisvad, J.C., & Samson, R.A. (2006). Novel Neosartorya species isolated from soil in Korea. International Journal of Systematic and Evolutionary Microbiology, 56(2),477-486. https://doi.org/10.1099/ijs.0.63980-0
Jovičić-Petrović, J., Stanković, I., Bulajić, A., Krstić, B., Kiković, D., & Raičević, V. (2016). Filamentous fungi isolated from grape marc as antagonists of Botrytis cinerea. Genetika 48, 37-48. https://doi.org/10.2298/GENSR1601037J
Jurick, II W.M., & Cox, K.D. (2017). Pre- and postharvest fungal apple diseases. In Evans (ed), Achieving sustainable cultivation of apples, 1st edn. (ch 14, pp 12). London: Burleigh Dodds Science Publishing.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Kusstatscher, P., Cernava, T., Harms, K., Maier, J., Eigner, H., Berg, G., & Zachow, C. (2019). Disease incidence in sugar beet fields is correlated with microbial diversity and distinct biological markers. Phytobiomes Journal, 3, 22-30.
Liebe, S., & Varrelmann, M. (2016). Effect of environment and sugar beet genotype on root rot development and pathogen profile during storage. Phytopathology, 106, 65-75. doi: 10.1094/PHYTO-07-15-0172-R
Liebe, S., Wibberg, D., Winkler, A., Pühler, A., Schlüter, A., & Varrelmann, M. (2016). Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes. FEMS Microbiology Ecology, 92(2), fiw004.
Liu, Y.J., Whelen, S., & Hall, B.D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution, 16(12),1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092.
Louw, J.P., & Korsten, L. (2014). Pathogenic Penicillium spp. on apple and pear. Plant Disease, 98(5), 590-598. https://doi.org/10.1094/PDIS-07-13-0710-RE
Lund, F. (1995). Differentiating Penicillium species by detection of indole metabolites using a filter paper method. Letters in Applied Microbiology, 20(4), 228-231. https://doi.org/10.1111/j.1472-765X.1995.tb00434.x
O’Brien, M., Egan, D., O’Kiely, P., Forristal, P.D., Doohan, F.M., & Fuller H.T. (2008). Morphological and molecular characterisation of Penicillium roqueforti and P. paneum isolated from baled grass silage. Mycological Research, 112(8), 921-932. https://doi.org/10.1016/j.mycres.2008.01.023
Perrone, G., & Susca, A. (2017) Penicillium species and their associated mycotoxins. In: Moretti, A., & Susca, A. (eds), Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. (pp 107-119). New York: Humana Press. https://doi.org/10.1007/978-1-4939-6707-0_5
Pitt, J.I., & Hocking, A.D. (2009). Penicillium and related genera. In: Pitt, J.I., & Hocking, A.D. (eds), Fungi and Food Spoilage (pp 169-273). Boston: Springer. https://doi.org/10.1007/978-0-387-92207-2_7
Rosenberger, D.A. (2014). Blue mold. In: Sutton, T.B., Aldwinkle, H.S., Angello, A.M., & Walgenbach, J.F. (eds), Compendium of apple and pear diseases and pests, 2nd edn. (p. 76). St Paul: APS Press.
Sanderson, P., & Spotts, R. (1995). Postharvest decay of winter pear and apple fruit caused by species of Penicillium. Phytopathology, 85, 103-110. https://doi.org/10.1094/Phyto-85-103
Sholberg, P.L., & Haag, P.D. (1996). Incidence of postharvest pathogens of stored apples in British Columbia. Canadian Journal of Plant Pathology, 18, 81-85. https://doi.org/10.1080/07060669609500661
Staden, R., Beal, K.F., & Bonfield, J.K. (2000). The Staden package, 1998. In: Bioinformatics Methods and Protocols (Methods in Molecular Biology, 132; pp 115-130). https://doi.org/10.1385/1-59259-192-2:115
Stošić, S., Ristić, D., Savković, Ž., Ljaljević Grbić, M., Vukojević, J., & Živković, S. (2021a). Penicillium and Talaromyces species as postharvest pathogens of pear fruit (Pyrus communis) in Serbia. Plant Disease, 105(11), 3510-3521. https://doi.org/10.1094/PDIS-01-21-0037-RE
Stošić, S., Ristić, D., Trkulja, N., & Živković, S. (2025). Penicillium species associated with postharvest blue mold rots of garlic in Serbia. Plant Disease, 109, 149-161. doi: 10.1094/PDIS-04-24-0890-RE
Stošić, S., Ristić, D., & Živković, S. (2021b). Postharvest decay of mandarin fruit in Serbia caused by Penicillium expansum. Zbornik Matice srpske za prirodne nauke, 140, 29-44.
Strausbaugh, C.A. (2018). Incidence, distribution, and pathogenicity of fungi causing root rot in Idaho long-term sugar beet storage piles. Plant Disease, 102(11), 2296-2307. https://doi.org/10.1094/PDIS-03-18-0437-RE
Strausbaugh, C.A., & Dugan, F. (2017). A novel Penicillium sp. causes rot in stored sugar beet roots in Idaho. Plant Disease, 101(10), 178-1787. https://doi.org/10.1094/PDIS-03-17-0410-RE
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., & Higgins, D.G. (1997). The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876
Uchino H (2001) Studies on storage rot in sugar beet [Beta vulgaris]. Memoirs of the Graduate School of Agriculture - Hokkaido University, 23, 319-401.
Vico, I., Duduk, N., Vasić, M., & Nikolić, M. (2014). Identification of Penicillium expansum causing postharvest blue mold decay of apple fruit. Pesticidi i fitomedicina, 29(4), 257-266. https://doi.org/10.2298/PIF1404257V
Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S.B., Klaassen, C.H.W., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T., & Samson, R.A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
White, T.J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., & White, T.J. (eds), PCR protocols: A guide to methods and applications (pp 315-322). New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Yin, G., Zhang, Y., Pennerman, K.K., Wu, G., Hua, S.S.T., Yu, J., Jurick, W.M., Guo, A., & Bennett, J.W. (2017). Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. Journal of Fungi, 3, 12. https://doi.org/10.3390/jof3010012
Žebeljan, A., Duduk, N., Vučković, N., Jurick, W.M., & Vico, I. (2021a). Incidence, speciation, and morpho-genetic diversity of Penicillium spp. causing blue mold of stored pome fruits in Serbia. Journal of Fungi, 7(12), 1019. https://doi.org/10.3390/jof7121019
Žebeljan, A., Vico, I., Duduk, N., Žiberna, B., & Krajnc, A.U. (2019). Dynamic changes in common metabolites and antioxidants during Penicillium expansum-apple fruit interactions. Physiological and Molecular Plant Pathology, 106, 166-174
Žebeljan, A., Vico, I., Duduk, N., Žiberna, B., & Krajnc, A.U. (2021b). Profiling changes in primary metabolites and antioxidants during apple fruit decay caused by Penicillium crustosum. Physiological and Molecular Plant Pathology, 113, 101586.
Živković, S., Ristić, D., & Stošić, S. (2021). First report of Penicillium olsonii causing postharvest fruit rot on tomato in Serbia. Plant Disease, 105(8), 2246. https://doi.org/10.1094/PDIS-02-21-0323-PDN
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).
