The Involvement of Reactive Oxygen Species in Causing Chronic Cardiovascular and Neurodegenerative Diseases and Some Cancers
Abstract
An increase in the occurrence of different infectious and chronic diseases as well as aging population has resulted in poor human health and decline in the quality of life all over the world. In fact, chronic diseases, which are partially resistant to currently available drugs are long lasting health hazards and require ongoing medical attention. Major causes of increase in these diseases are considered to be changes in the environment as well as diets and lifestyle. Particularly, there has been changes from a simple, nutritious, low- calorie diet and active lifestyle to a complex and processed food rich in high calories accompanied by a sedentary lifestyle and unhealthy living habits. Since high-calorie diets and inactive lifestyle are known to promote the production of reactive oxygen species (ROS) in the body, it is likely that oxidative stress and associated inflammation may be intimately involved in enhancing the resistance of several disorders to the existing therapeutic interventions and thus promoting the occurrence of chronic diseases. A thorough review of literature regarding the pathogenesis of some major chronic diseases including cardiovascular disease like heart failure, neurodegenerative disorder like Alzheimer’s disease and various types of cancer has revealed that these health hazards are associated with increased oxidative stress, production of pro-inflammatory chemicals such as nitric oxide and some cytokines, as well as formation of some toxic substances such as advanced glycation end products. It is thus evident that extensive research work by employing genetic, immunological and nutraceutical approaches, needs to be carried out for developing some novel antioxidants with anti-inflammatory activities for reducing the incidence of chronic diseases. In the meantime, it would be prudent for patients with chronic diseases to pursue the preventive measures involving reduced intake of high calorie diet and following an active lifestyle.
References
Bernell S, Howard SW. Use your words carefully: What is a chronic disease? Front Public Health. 2016;4:159. doi: 10.3389/fpubh.2016.00159.
Jones R. Acute and chronic illness. Br J Gen Pract. 2010;60(579):714. doi: 10.3399/bjgp10X515638.
Martin CM. Chronic disease and illness care: adding principles of family medicine to address ongoing health system redesign. Can Fam Physician. 2007 Dec;53(12):2086-91. PMID: 18077734.
World Health Organization [Internet]. Cardiovascular diseases. [Cited: 10-Jan-2024]. Available at: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.
Gracey M, King M. Indigenous health part 1: determinants and disease patterns. Lancet. 2009;374(9683):65-75. doi: 10.1016/S0140-6736(09)60914-4.
Phillips KM, Pehrsson PR, Agnew WW, Scheett AJ, Follett JR, Lukaski HC, et al. Nutrient composition of selected traditional United States Northern Plains Native American plant foods. J Food Comp Anal. 2014;34(2):136-52. doi: 10.1016/j.jfca.2014.02.010.
Park S, Hongu N, Daily JW. Native American foods: History, culture, and influence on modern diets. J Ethnic Foods. 2016;3(3):171-7. doi: 10.1016/j.jef.2016.08.001.
Vanderhoof JA. Immunonutrition: the role of carbohydrates. Nutrition. 1998;14(7-8):595-8. doi: 10.1016/s0899-9007(98)00006-9.
Meetoo D. Chronic diseases: the silent global epidemic. British Nursing. 2013;17:21. doi: 10.12968/bjon.2008.17.21.31731.
Cockerham WC, Hamby BW Oates GR. The social determinants of chronic disease. Am J Prev Med. 2017;52(1S1):S5-S12. doi: 10.1016/j.amepre.2016.09.010.
Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative review. Prev Med Rep. 2018;12:284-93. doi: 10.1016/j.pmedr.2018.10.008.
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126-67. doi: 10.1089/ars.2012.5149.
Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472-84. doi: 10.3390/biom5020472.
Li W, Young JF, Sun J. NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc Natl Acad Sci USA. 2018;115(30):7765-70. doi: 10.1073/pnas.1800115115.
Dhalla NS, Elimban V, Bartekova M, Adameova A. Involvement of oxidative stress in the development of subcellular defects and heart disease. Biomedicines. 2022;10(2):393. doi: 10.3390/biomedicines10020393.
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-54. doi: 10.1152/physrev.00040.2012.
Ushio-Fukai M. Vascular signaling through G protein coupled receptors – new concepts. Curr Opin Nephrol Hypertens. 2010;18(2):153-9. doi: 10.1097/MNH.0b013e3283252efe.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-50. doi: 10.1152/physrev.00026.2013.
Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. Biochemistry. 2013;78(13):1490-511. doi: 10.1134/S0006297913130087.
Venditti P, Stefano LD, Meo SD. Mitochondrial metabolism of reactive oxygen species. Mitochondrion. 2013;13(2):71-82. doi: 10.1016/j.mito.2013.01.008.
Shkolnik K, Tadmor A, Ben-Dor S, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci USA. 2011;108(40):1462-7. doi: 10.1073/pnas.1017213108.
Yarosz EL, Chang CH. The role of reactive oxygen species in regulating T cell mediated immunity and disease. Immune Network. 2018;18(1):e14. doi: 10.4110/in.2018.18.e14.
Eze M. The oxygen paradox and the place of oxygen in our understanding of life, aging, and death. Ultim Real Mean. 2006;29(1):46-61. doi: 10.3138/uram.29.1-2.46.
Magder S. Reactive oxygen species: toxic molecules or spark of life? Crit Care. 2006;10(1):208. doi: 10.1186/cc3992.
Choe E, Min DB. Chemistry and reactions of reactive oxygen species in foods. Crit Rev Food Sci Nutr. 2006;46(1):1-22. doi: 10.1080/10408390500455474.
World Health Organization [Internet]. Cardiovascular diseases factsheet. 2021. [Cited: 10-Jan-2024]. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: An overview. J Infect Dis. 2017;216(suppl_6):S629-S635. doi: 10.1093/infdis/jix362.
Uribarri J, Woodruff S, Goodman S, Weijing C, Chen X, Pyzik R, et al. Advanced glycation end product in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911-6.e12. doi: 10.1016/j.jada.2010.03.018.
Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation end products: Emerging mechanisms of disease. Nutrients. 2017;9(4):385. doi: 10.3390/nu9040385.
Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1-37. doi: 10.1007/s00204-015-1579-5.
Titheradge, M. Nitric oxide in septic shock. Biochem Biophys Res Commun. 1999;1411(2-3):437-55. doi: 10.1016/s0005-2728(99)00031-6.
Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005;1043:461-6. doi: 10.1196/annals.1333.052.
Rajopadhye SH, Mukherjee SR, Chowdhary AS, Dandekar SP. Oxidative stress markers in tuberculosis and HIV/TB co-infection. J Clin Diagn Res. 2017;11(8):BC24-BC28. doi: 10.7860/JCDR/2017/28478.10473.
Hibbs J, Taintor R, Vavrin Z, Rachlin E. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157(1):87-94. doi: 10.1016/s0006-291x(88)80015-9.
Pacher P, Beckman J, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Am Physiol Soc. 2007;87(1):315-424. doi: 10.1152/physrev.00029.2006.
Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. BBA Bioenergetics. 2015;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012.
Frak W, Wojtasinska A, Lisinska W, Mlynarska E, Franczyk B, Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines. 2022;10(8):1938. doi: 10.3390/biomedicines10081938.
Thiriet M. Cardiovascular disease: An introduction. Vasculopathies. 2018;8:1-90. doi: 10.1007/978-3-319-89315-0_1.
Mendis S, Puska P, Norrving, B, World Health Organization, World Heart Federation. et al. Global atlas on cardiovascular disease prevention and control. Geneva, Switzerland: World Health Organization, 2011.
Mackinnon ES, Goeree R, Goodman SG, Rogoza RM, Packalen M, Pericleous L, et al. Increasing prevalence and incidence of atherosclerotic cardiovascular disease in adult patients in Ontario, Canada from 2002 to 2018. Can J Cardiol Open. 2022;4(2):206-13. doi: 10.1016/j.cjco.2021.10.003.
Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis 2017;6:1-9. doi: 10.1177/2048004016687211.
Nagase M, Ayuzawa N, Kawarazaki W, Ishizawa K, Ueda K, Yoshida S, Fujita T. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension. 2012;59(2):500-6. doi: 10.1161/HYPERTENSIONAHA.111.185520.
Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, Perrier R, Soukaseum C, Cat AN, et al. Conditional mineralocorticoid receptor expression in the heart leads to life threatening arrhythmias. Circulation. 2005;111(23):3025-33. doi: 10.1161/CIRCULATIONAHA.104.503706.
Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH, Xu X, et al. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci Signal. 2019; 12(577):1-38. doi: 10.1126/scisignal.aau9685.
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. Am J Hypertens. 2018;31(11):1165-74. doi: 10.1093/ajh/hpy120.
Ayuzawa N, Nigase M, Ueda K, Nishimoto M, Kawarazaki W, Marumo T, et al. Rac1mediated activation of mineralocorticoid receptor in pressure overload-induced cardiac injury. Hypertension. 2016;67(1):99-106. doi: 10.1161/HYPERTENSIONAHA.115.06054
Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA. 2010;107(35):15565-70. doi: 10.1073/pnas.1002178107.
Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implications in proteinuric kidney disease. Nature Med. 2008;14:1370-6. doi: /10.1038/nm.1879.
Okamoto K, Tanaka H, Ogawa H, Makino Y, Eguchi H, Hayashi S, et al. Redox dependent regulation of nuclear import of the glucocorticoid receptor. J Biol Chem. 1999;274(15):10363-71. doi: 10.1074/jbc.274.15.10363.
Mohamed R, Janke R, Guo W, Cao Y, Zhou Y, Zheng W, et al. GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. Vasc Biol. 2019;1(1):R1-R11. doi: 10.1530/VB-18-0004.
Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21(4):489-95. doi: 10.1161/01.atv.21.4.489.
Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of b-catenin during canonical wnt signaling. Cell. 2008;133(2):340-53. doi: 10.1016/j.cell.2008.01.052.
Kawashima T, Bao YC, Nomura Y, Moon Y, Tonozuka Y, Minoshima Y, et al. Rac1 and a GTPase-activating protein, MgcRacGAP, are required for nuclear translocation of STAT transcription factors. J Cell Biol. 2006;175(6):937-46. doi: 10.1083/jcb.200604073.
Berridge MJ. The inositol triphosphate/calcium signaling pathway in health and disease. Physiol Rev. 2016;96(4):1261-96. doi: 10.1152/physrev.00006.2016.
Fanelli C, Zatz R. Linking oxidative stress, the renin-angiotensin system, and hypertension. Hypertension. 2011;57: 373-4. doi: 10.1161/HYPERTENSIONAHA.110.167775.
Callera GE, Montezano AC, Yogi A, Tostes RC, Touyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertension. Curr Opin Nephrol Hypertens. 2007;16(2):90-104. doi: 10.1097/MNH.0b013e328040bfbd.
Anderson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, et al. Ryanodine receptos oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14(2):196-207. doi: 10.1016/j.cmet.2011.05.014.
Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and clinical significance of myocardial redox. Ann Transl Med. 2017;5(16):326. doi: 10.21037/atm.2017.06.27.
Kim H, Yun J, Kwon SM, Pineda B. Therapeutic strategies for oxidative stress-related cardiovascular diseases removal of excess reactive oxygen species in adult stem cells. Oxid Med Cell Longev. 2016:2483163. doi: 10.1155/2016/2483163.
Adameova A, Horvath C, Abdul-Ghani S, Varga ZV, Suleiman MS, Dhalla NS. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury: A focus on necroptosis. Biomedicines. 2022;10(1):127. doi: 10.3390/biomedicines10010127.
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. doi: 10.1016/j.cellsig.2012.01.008.
Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181-90. doi: 10.1152/ajpheart.00554.2011.
Kaludercic N, Carpi A, Menabo R, Lisa FD, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010.
Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants. 2021;10(6):931. doi: 10.3390/antiox10060931.
Fang X, Wang H, han D, Xie E, Yang X, Wei J, Gu S, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 2019;116(7):2672-80. doi: 10.1073/pnas.1821022116.
Tsutsui H, Tsuchihashi-Makaya M, Kinugawa S, Goto D, Takeshita A, JCAREGENERAL investigators. Characteristics and outcomes of patients with heart failure in general practices and hospitals. Circ J. 2007;71(4):449-54. doi: 10.1253/circj.71.449.
Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. Immunity, inflammation, and oxidative stress in heart failure: Emerging molecular targets. Cardiovasc Drugs Ther. 2017;31(5-6):593-608. doi: 10.1007/s10557-017-6752-z.
Schenkel PC, Tavares AMV, Fernandes RO, Diniz GP, Bertagnolli M, Araujo ASR, et al. Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats. Mol Cell Biochem. 2010;341(12):1–8. doi: 10.1007/s11010-010-0431-8.
Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima, et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res. 2008;103(12):1466-72. doi: 10.1161/CIRCRESAHA.108.184457.
Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antiox Redox Signal. 2003;5(6):731-40. doi: 10.1089/152308603770380034.
Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, et al. Oxidative stress–mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res. 2001;89(3):279-86. doi: 10.1161/hh1501.094115.
Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655-73. doi: 10.1097/00004872-200018060-00002.
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart failure during health and disease. Heart Fail Rev. 2018;23:733-58. doi: 10.1007/s10741-018-9716-x.
Prasad K. Is there any evidence that AGEs/RAGE is a universal biomarker/risk marker for diseases? Mol Cell Biochem. 2019;451(1-2):139-44. doi: 10.1007/s11010-018-3400-2.
Abdelgadir E, Ali R, Rashid F, Bashier A. Effect of metformin on different non-diabetes related conditions, a special focus on malignant conditions: Review of literature. J Clin Med Res. 2017;9(5):388-95. doi: 10.14740/jocmr2922e.
Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne). 2020;11:191. doi: 10.3389/fendo.2020.00191.
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M, Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 2020;27(5):494-510. doi: 10.1177/2047487319870344.
Tomandlova M, Parenica J, Lokaj P, Ondrus T, Kala P, Miklikova M, et al. Prognostic value of oxidative stress in patients with acute myocardial infarction complicated by cardiogenic shock: A prospective cohort study. Free Radic Biol Med. 2021;174:66-72. doi: 10.1016/j.freeradbiomed.2021.07.040.
Mongirdienė A, Liuizė A, Karčiauskaitė D, Mazgelytė E, Liekis A, Sadauskienė I. Relationship between oxidative stress and left ventricle markers in patients with chronic heart failure. Cells. 2023;12(5):803. doi: 10.3390/cells12050803.
Bhullar SK, Shah AK, Dhalla NS. Role of angiotensin II in the development of subcellular remodeling in heart failure. Explor Med. 2021;2:352–71. doi: 10.37349/emed.2021.00054.
Bhullar SK, Shah AK, Dhalla NS. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. Scr Med. 2022;53(1):51-76. doi: 10.5937/scriptamed53-36256.
Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circulation Res. 1998;82(4):482-95. doi: 10.1161/01.res.82.4.482.
D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020;1-29. doi: 10.1155/2020/5732956.
Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H, et al. LOX-1MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res. 2009;84(1):127-36. doi: 10.1093/cvr/cvp177.
Bartekova M, Adameova A, Gorbe A, Ferenczyova K, Pechanova O, Lazou A, et al. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med. 2021;169:446-77. doi: 10.1016/j.freeradbiomed.2021.03.045.
Papakyriakopoulou P, Velidakis N, Khattab E, Valsami G, Korakianitis I, Kadoglou NPE. Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals. 2022;15(8):1019. doi: 10.3390/ph15081019.
Mehmood A, Usman M, Patil P, Zhao L, Wang C. A review on management of cardiovascular diseases by olive polyphenols. Food Sci Nutr. 2020;8(9):4639-55. doi: 10.1002/fsn3.1668.
Khan SA, Campbell AM, Lu Y, An L. Alpert JS, Chen QM. N-acetylcysteine for cardiac protection during coronary artery reperfusion: A systematic review and meta-analysis of randomized control trials. Front Cardiovasc Med. 2021;8:752939. doi: 10.3389/fcvm.2021.752939.
Maksimenko AV, Vavaev AV. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress. Heart Int. 2012;7(1):e3. doi: 10.4081/hi.2012.e3.
Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077. doi: 10.1038/srep01077.
Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, Kreig T. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail. 2014;16(7):712-7. doi: 10.1002/ejhf.100.
Xu Q, Hao X, Yang Q, Si L. Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem Biophys Res Commun. 2009;388(2):389-94. doi: 10.1016/j.bbrc.2009.08.021.
Pol AV, Gilst WH, Voors AA, Meer PV. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(4):425-35. doi: 10.1002/ejhf.1320.
Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem Res Toxicol. 2010;23(6):1105-14. doi: 10.1021/tx100125t.
Cingolani HE, Plastino JA, Escudero EM, Mangal B, Brown J, Perez NG. The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata study. J Card Fail. 2006;12(7):491-8. doi: 10.1016/j.cardfail.2006.05.005.
Freudenberger RS, Schwarz Jr RP, Brown J, Moore A, Mann D, Givertz MM, et al. Rationale, design and organisation of an efficacy and safety study of oxypurinol Added to standard therapy in patients with NYHA class III – IV congestive heart failure. Expert Opin Investig Drugs. 2004;13(11):1509-16. doi: 10.1517/13543784.13.11.1509.
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacotherapy. 2003;57(3-4):145-55. doi: 10.1016/s0753-3322(03)00043-x.
Kovacs A, Herwig M, Budde H, Delalat S, Kolijn D, Bodi B, et al. Interventricular differences of signaling pathways-mediated regulation of cardiomyocyte function in response to high oxidative stress in the post-ischemic failing rat heart. Antioxidants (Basel). 2021;10(6):964. doi: 10.3390/antiox10060964.
Adamy C, Mulder P, Khouzami L, Andrieu-abadie N, Defer N, Candiani G, et al. Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. J Mol Cell Cardiol. 2007;43(3):344-53. doi: 10.1016/j.yjmcc.2007.06.010.
Yoshida T, Watanabe M, Engelman DT, Engelman RM, Schley JA, Maulik N, et al. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 1996;28(8):1759-67. doi: 10.1006/jmcc.1996.0165.
Schupp N, Schmid U, Heidland A, Stopper H. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008;199(2):278-87. doi: 10.1016/j.atherosclerosis.2007.11.016.
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376-85. doi: 10.3969/j.issn.1673-5374.2012.05.009.
Behl T, Makkar R, Sehgal A, Singh S, Sharma N, Zengin G, et al. Current trends in neurodegeneration: cross talks between oxidative stress, cell death, and inflammation. doi: 10.3390/ijms22147432.
Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Crit Rev Neurobiol. 1996;10(3-4):291-316. doi: 10.1615/critrevneurobiol.v10.i3-4.20.
Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernandez YL, Hernandez-Cruz EY, Pedraza-Chaverri JP. Neurons and oxidative stress: An overview of basic concepts. Oxygen. 2022;2:437-78. doi: 10.3390/oxygen2040030.
Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the SOD2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA. 2001;98(5):2278-83. doi: 10.1073/pnas.051627098.
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. Life. 2008;60(9):575-90. doi: 10.1002/iub.91.
Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacol. 2004;58(1):39-46. doi: 10.1016/j.biopha.2003.11.004.
Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis. Physiology. 2003;18(3):89-94. doi: 10.1152/nips.01433.2002.
Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. New Engl J Med. 2003;348(14):1365-75. doi: 10.1056/NEJMra022366.
Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M. Oxidative stress alters global histone modification and DNA methylation. Free Rad Biol Med. 2015;82:22-8. doi: 10.1016/j.freeradbiomed.2015.01.028.
Blaise GA, Gauvin D, Gangal M, Authier. Nitric oxide, cell signaling and cell death. Toxicology. 2005;208(2):177-92. doi: 10.1016/j.tox.2004.11.032.
Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA. 2004;101(12):4003-8. doi: 10.1073/pnas.0307446101.
Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med. 1994;330(9):613-22. doi: 10.1056/NEJM199403033300907.
Rosenberg RN. The molecular and genetic basis of Alzheimer’s disease: the end of the beginning: the 2000 Wartenberg lecture. Neurology. 2000;54(11):2045-54. doi: 10.1212/wnl.54.11.2045.
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789.
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F, et al. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450-64. doi: 10.1016/j.redox.2017.10.014.
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016;4(5):519-22. doi: 10.3892/br.2016.630.
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegen. 2020;15(30):1-22. doi: 10.1186/s13024-020-00376-6.
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Rad Biol Med. 2013;65:1174-94. doi: 10.1016/j.freeradbiomed.2013.09.001.
Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019;2(2):82-7. doi: /10.1002/agm2.12074.
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: Targets for therapeutics. J Neurochem. 2016;139 Suppl 1:179197. doi: 10.1111/jnc.13425.
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Rad Biol Med. 2019;133:130-43. doi: 10.1016/j.freeradbiomed.2018.09.043.
Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, et al. Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem. 2003;278(19):17401-7. doi: 10.1074/jbc.M300629200.
Ejaz HW, Wang W, Lang M. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches. Int J Mol Sci. 2020;21(20):7660. doi: 10.3390/ijms21207660.
Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nut. 2000;71(2):S621-S629. doi: 10.1093/ajcn/71.2.621s.
Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part 1: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Rad Biol Med. 2002;33(4):562-71. doi: 10.1016/s0891-5849(02)00914-0.
Markesbery WR, Carney JM. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 2006;9(1):133-46. doi: 10.1111/j.1750-3639.1999.tb00215.x.
Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, et al. The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev. 2015;2015: 1-12. doi: 10.1155/2015/352723.
Blagov A, Borisov E, Grechko A, Popov M, Sukhorukov V, Orekhov A. The role of impaired mitochondrial transport in the development of neurodegenerative diseases. J Integr Neurosci. 2023;22(4):86. doi: 10.31083/j.jin2204086.
Cecerska-Heryć E, Polikowska A, Serwin N, Roszak M, Grygorcewicz B, Heryć R, et al. Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochem Int. 2022;153:105269. doi: 10.1016/j.neuint.2021.105269.
Hollen C, Neilson LE, Barajas RF Jr, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol. 2023;13:1025659. doi: 10.3389/fneur.2022.1025659.
133. Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology. 2023;24(5):609-62. doi: 10.1007/s10522-023-10050-1.
Alvarado JC, Fuentes-Santamaría V, Juiz JM. Frailty syndrome and oxidative stress as possible links between age-related hearing loss and Alzheimer's disease. Front Neurosci. 2022;15:816300. doi: 10.3389/fnins.2021.816300.
Saha S, Buttari B, Profumo E, Tucci P, Saso L. A perspective on Nrf2 signaling pathway for neuroinflammation: A potential therapeutic target in Alzheimer's and Parkinson's diseases. Front Cell Neurosci. 2022;15:787258. doi: 10.3389/fncel.2021.787258.
Boas SM, Joyce KL, Cowell RM. The NRF2-dependent transcriptional regulation of antioxidant defense pathways: Relevance for cell type-specific vulnerability to neurodegeneration and therapeutic intervention. Antioxidants (Basel). 2021;11(1):8. doi: 10.3390/antiox11010008.
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. Phytomedicine. 2023;109:154582. doi: 10.1016/j.phymed.2022.154582.
Bhatia V, Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. J Neurol Sci. 2021;421:117253. doi: 10.1016/j.jns.2020.117253.
Hyun DH, Lee J. A new insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases. Antioxidants (Basel). 2021;11(1):7. doi: 10.3390/antiox11010007.
Eren F, Yilmaz SE. Neuroprotective approach in acute ischemic stroke: A systematic review of clinical and experimental studies. Brain Circ. 2022;8(4):172-9. doi: 10.4103/bc.bc_52_22.
Li Z, Liu Y, Wei R, Yong VW, Xue M. The important role of zinc in neurological diseases. Biomolecules. 2022;13(1):28. doi: 10.3390/biom13010028.
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products. Antioxidants (Basel). 2022;12(1):94. doi: 10.3390/antiox12010094.
Esmaeili Y, Yarjanli Z, Pakniya F, Bidram E, Los MJ, Eshraghi M, et al. Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. J Cont Release. 2022;345:147-75. doi: 10.1016/j.jconrel.2022.03.001.
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65-74. doi: 10.2174/157015909787602823.
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Europ J Med Chem. 2018;153:105-15. doi: 10.1016/j.ejmech.2017.09.001.
Dinkova-Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 2018;285(19):35763590. doi: 10.1111/febs.14379.
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-protein-coupled receptors in CNS: A potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells. 2020;9(2):506. doi: 10.3390/cells9020506.
Lutjens R, Rocher JP. Recent advances in drug discovery of GPCR allosteric modulators for neurodegenerative disorders. Curr Opin Pharmacol. 2017;32:91-5. doi: 10.1016/j.coph.2017.01.001.
Hamilton A, Esseltine JL, DeVries RA, Cregan SP, Ferguson SSG. Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer's disease. Mol Brain. 2014;7:40. doi: 10.1186/1756-6606-7-40.
Yun HM, Rhim H. The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol. 2011;20(4):159-68. doi: 10.5607/en.2011.20.4.159.
Nirogi R, Jayarajan P, Shinde A, Mohammed AR, Grandhi VR, Benade V, et al. Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders. Biomolecules. 2023;13(2):309. doi: 10.3390/biom13020309.
Nunez MT, Chana-Cuevas P. New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals. 2018;11(4):109. doi: 10.3390/ph11040109.
Verma S, Kumar A, Tripathi T, Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol. 2018;70(8):985-93. doi: 10.1111/jphp.12919.
Leon R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med Res Rev. 2013;33(1):139-89. doi: 10.1002/med.20248.
Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50-6. doi: 10.1038/nature19323.
Ferrero J, Williams L, Stella H, Leitermann K, Mikulskis A, O’Gorman J, et al. Firstin-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer's disease. Alzheimer's & dementia: Transl Res Clin Interven. 2016;2(3):169-76. doi: 10.1016/j.trci.2016.06.002.
Shuai Q, He L, Wang Q, Wong YC, Mak M, Ho CY. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer's disease. Life Sci 2018;207:428-35. doi: 10.1016/j.lfs.2018.06.032.
Patocka J, Jun D, Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr Drug Metabol. 2008;9(4):332-5. doi: 10.2174/138920008784220619.
Bolognesi ML, Bartolini M, Mancini F, Chiriano G, Ceccarini L, Rosini M, et al. Bis (7)-tacrine derivatives as multitarget-directed ligands: Focus on anticholinesterase and antiamyloid activities. Chem Med Chem 2010;5(8):1215-20. doi: 10.1002/cmdc.201000086.
World Health Organization. [Internet]. Cancer Factsheet. 2022. [Cited: 10-Jan-2024]. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer
Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217-22. doi: 10.2991/jegh.k.191008.001.
Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30(6):440-51. doi: 10.1016/j.tcb.2020.03.002.
Walton EL. The dual role of ROS, antioxidants and autophagy in cancer. Biomed J. 2016; 39(2):89-92. doi: 10.1016/j.bj.2016.05.001.
Chio IC, Tuveson DA. ROS in cancer: The burning question. Trend Mol Med. 2017;23(5):411-29. doi: 10.1016/j.molmed.2017.03.004.
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nature Rev Cancer. 2014;14:709-21. doi: 10.1038/nrc3803.
WhiteE. Autophagy and p53. Cold Spring Harb Perspect Med. 2016;6(4):a026120. doi: 10.1101/cshperspect.a026120.
Li Z, Yang Y, Ming M, Liu B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 2011;414(1):5-8. doi: 10.1016/j.bbrc.2011.09.046.
Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA. 2009;106(8):2770-5. doi: 10.1073/pnas.0807694106.
Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Rad Biol Med. 2012;53(7):1399-410. doi: 10.1016/j.freeradbiomed.2012.07.011.
Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opinion Cell Biol. 2015;33:8-13. doi: 10.1016/j.ceb.2014.09.010.
Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277(23):20336-42. doi: 10.1074/jbc.M111899200.
Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003;423:769-73. doi: 10.1038/nature01680.
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO, et al. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Trans. 211;792639. doi: 10.1155/2011/792639.
Hurd TR, DeGennaro, Lehmann R. Redox regulation of cell migration and adhesion. Trends Cell Biol. 2012;22(2):107-15. doi: 10.1016/j.tcb.2011.11.002.
Barrett CW, Ning W, Chen X, Smith JJ, Washington MK, Hill KE, et al. Tumor suppressor function of the plasma glutathione peroxidase Gpx3 in colitis-associated carcinoma. Cancer Res. 2013;73(3):1245-55. doi: 10.1158/0008-5472.CAN-12-3150.
Porporato PE, Payen VL, Perez-Escuredo J, Saedeleer CJD, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8(3):754-66. doi: 10.1016/j.celrep.2014.06.043.
Melo D, Ribeiro S, Santos-Silva A, Rocha S. Rol of peroxiredoxin 2 in erythrocyte antioxidant defense: Peroxidase and chaperone. Free Rad Biol Med. 2018;120:S83. doi: 10.1016/j.freeradbiomed.2018.04.274.
Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2009;301(1):39-51. doi: 10.1001/jama.2008.864.
179. Gal KL, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015;7(308):308re8. doi: 10.1126/scitranslmed.aad3740.
Jaune-Pons E, Vasseur S. Role of amino acids in regulation of ROS balance in cancer. Arch Biochem Biophy. 2020;689:108438. doi: 10.1016/j.abb.2020.108438.
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101-5. doi: 10.1038/nature12040.
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186-91. doi: 10.1038/nature15726.
Ogrunc M, Micco RD, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21:998-1012. doi: 10.1038/cdd.2014.16.
Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem. 2014;85:337-58. doi: 10.1007/978-94-017-9211-0_18.
Cao L, Xu X, Cao LL, Wang RH, Coumoul X, Kim SS, et al. Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. Carcinogenesis 2007;28(7):1401-7. doi: 10.1093/carcin/bgm060.
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience. 2019;13:961. doi: 10.3332/ecancer.2019.961.
Singh B, Sharma B, Kanwar SS, Kumar A. Lead phytochemicals for anticancer drug development. Front Plant Sci. 2016;7:1667. doi: 10.3389/fpls.2016.01667.
Perillo B, Donato MD, Pezone A, Zazzo ED, Giovannelli P, Galasso G, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 2020;52(2):192-203. doi: 10.1038/s12276-020-0384-2.
Magda D, Miller RA. Motexafin gadolinium: A novel redox active drug for cancer therapy. Sem Cancer Biol. 2006;16(6):466-76. doi: 10.1016/j.semcancer.2006.09.002.
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70. doi: 10.1111/j.2042-7158.2012.01567.x.
Griffith OW, Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558-60. PMID: 38242.
Moulder S, Dhillon N, Ng C, Hong D, Wheler J, Naing A, et al. A phase I trial of imexon, a pro-oxidant, in combination with docetaxel for the treatment of patients with advanced breast, non-small cell lung and prostate cancer. Invest New Drugs. 2010;28(5):634-40. doi: 10.1007/s10637-009-9273-1.
Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;5381692-12. doi: 10.1155/2019/5381692.
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688-92. doi: 10.1038/s41586-019-1705-2.
Doll S, Freitas FP, Shah R, Aldrovandi M, Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693-8. doi: 10.1038/s41586-019-1707-0.
Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative cancer diagnosis and therapy tools. APL Bioengineering. 2019;3(1):011502. doi: 10.1063/1.5079943.
Bazak R, Houri M, Achy SE, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clinical Oncol. 2015;141(5):769-84. doi: 10.1007/s00432-014-1767-3.
Lebedeva IV, Su ZZ, Sarkar D, Fisher PB. Restoring apoptosis as a strategy for cancer gene therapy: Focus on p53 and Mda-7. Sem Cancer Biol. 2003;13(2):169-78. doi: 10.1016/s1044-579x(02)00134-7.
Brace C. Thermal tumor ablation in clinical use. IEEE Pulse. 2011;2(5):28-38. doi: 10.1109/MPUL.2011.942603.
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122-34. doi: 10.1016/j.canlet.2017.11.002.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).